摘要翻译:
正交矩阵在降秩矩阵逼近和矩阵值
数据分析中起着重要的作用。矩阵Bingham-von Mises-Fisher分布是包含线性项和二次项的正交矩阵集合上的概率分布,在多元数据和关系数据的潜因子模型中作为后验分布出现。本文描述了从这类分布中抽样的拒绝和吉布斯抽样算法,并说明了它们在蛋白质-蛋白质相互作用网络分析中的应用。
---
英文标题:
《Simulation of the matrix Bingham-von Mises-Fisher distribution, with
applications to multivariate and relational data》
---
作者:
Peter Hoff
---
最新提交年份:
2007
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
英文摘要:
Orthonormal matrices play an important role in reduced-rank matrix approximations and the analysis of matrix-valued data. A matrix Bingham-von Mises-Fisher distribution is a probability distribution on the set of orthonormal matrices that includes linear and quadratic terms, and arises as a posterior distribution in latent factor models for multivariate and relational data. This article describes rejection and Gibbs sampling algorithms for sampling from this family of distributions, and illustrates their use in the analysis of a protein-protein interaction network.
---
PDF链接:
https://arxiv.org/pdf/712.4166