全部版块 我的主页
论坛 经济学人 二区 外文文献专区
387 0
2022-04-05
摘要翻译:
对于C^2的任意多项式映射,我们发现了良好的动力紧致性,并利用它们证明了次增长序列满足一个线性积分递推公式。对于低拓扑度的映射,我们证明了Green函数是良好的。对于最大拓扑度的映射,我们给出了范式。
---
英文标题:
《Dynamical compactifications of C^2》
---
作者:
Charles Favre, Mattias Jonsson
---
最新提交年份:
2009
---
分类信息:

一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Complex Variables        复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--

---
英文摘要:
  We find good dynamical compactifications for arbitrary polynomial mappings of C^2 and use them to show that the degree growth sequence satisfies a linear integral recursion formula. For maps of low topological degree we prove that the Green function is well behaved. For maps of maximum topological degree, we give normal forms.
---
PDF链接:
https://arxiv.org/pdf/0711.2770
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群