摘要翻译:
本文提出了一种基于仿射过程的利率衍生品定价方法。我们扩展了Keller-Ressel等人提出的方法。(2009)通过改变状态空间的选择。我们为上限和楼层的定价提供了半封闭形式的解决方案。然后,我们证明了在一个多因素的环境下对交换定价是可能的,具有很好的分析可处理性。这是通过Collin-Dufresne和Goldstein(2002)开发的Edgeworth扩展方法完成的。一个数字练习说明了Wishart Libor模型在描述隐含波动率表面的移动方面的灵活性。
---
英文标题:
《A flexible matrix Libor model with smiles》
---
作者:
Jos\'e Da Fonseca and Alessandro Gnoatto and Martino Grasselli
---
最新提交年份:
2012
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Pricing of Securities 证券定价
分类描述:Valuation and hedging of financial securities, their derivatives, and structured products
金融证券及其衍生产品和结构化产品的估值和套期保值
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
英文摘要:
We present a flexible approach for the valuation of interest rate derivatives based on Affine Processes. We extend the methodology proposed in Keller-Ressel et al. (2009) by changing the choice of the state space. We provide semi-closed-form solutions for the pricing of caps and floors. We then show that it is possible to price swaptions in a multifactor setting with a good degree of analytical tractability. This is done via the Edgeworth expansion approach developed in Collin-Dufresne and Goldstein (2002). A numerical exercise illustrates the flexibility of Wishart Libor model in describing the movements of the implied volatility surface.
---
PDF链接:
https://arxiv.org/pdf/1203.4786