摘要翻译:
超密集网络的部署是满足5G数据速率需求的主要方法之一。然而,独立小基站的高密度会增加网络内部的干扰。为了避免这种干扰,需要开发自组织的方法来管理网络资源。本文提出了一种在干扰受限网络中基于多智能体Q学习的分布式功率分配算法。该方法通过简单的消息传递来协调SBSs之间的协作,以实现最优的联合功率分配。仿真结果表明了该方法在两用户情况下的最优性。
---
英文标题:
《Joint Power Allocation in Interference-Limited Networks via Distributed
Coordinated Learning》
---
作者:
Roohollah Amiri, Hani Mehrpouyan, David Matolak, Maged Elkashlan
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的
机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
The deployment of ultra-dense networks is one of the main methods to meet the 5G data rate requirements. However, high density of independent small base stations (SBSs) will increase the interference within the network. To circumvent this interference, there is a need to develop self-organizing methods to manage the resources of the network. In this paper, we present a distributed power allocation algorithm based on multi-agent Q-learning in an interference-limited network. The proposed method leverages coordination through simple message passing between SBSs to achieve an optimal joint power allocation. Simulation results show the optimality of the proposed method for a two-user case.
---
PDF链接:
https://arxiv.org/pdf/1806.02449