全部版块 我的主页
论坛 经济学人 二区 外文文献专区
196 0
2022-04-08
摘要翻译:
我们介绍并研究了Halphen连分式理论的高属推广。我们的基本概念是超椭圆Haplhen(HH)元素$$\frac{\sqrt{X_{2g+2}}-\sqrt{Y_{2g+2}}{x-y},$$取决于参数$y$,其中$X_{2g+2}$是一个次数$2g+2$的多项式,$Y_{2g+2}=X_{2g+2}(y)$。我们研究了规则和不规则HH元素。它们的连分式展开以及这种展开的一些基本性质:奇偶对称性和周期性。
---
英文标题:
《Multi-valued hyperelliptic continued fractions of generalized Halphen
  type》
---
作者:
Vladimir Dragovic
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We introduce and study higher genera generalizations of the Halphen theory of continued fractions. The basic notion we start with is hyperelliptic Haplhen (HH) element $$\frac{\sqrt{X_{2g+2}}-\sqrt{Y_{2g+2}}}{x-y},$$ depending on parameter $y$, where $X_{2g+2}$ is a polynomial of degree $2g+2$ and $Y_{2g+2}=X_{2g+2}(y)$. We study regular and irregular HH elements. their continued fraction development and some basic properties of such development: even and odd symmetry and periodicity.
---
PDF链接:
https://arxiv.org/pdf/0809.4931
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群