摘要翻译:
本文提出了一种新的
机器学习(ML)框架,用于预测、高效地部署无人机,充当空中基站(BSs),为蜂窝用户提供按需无线服务。为了对蜂窝业务进行全面的分析,提出了一种基于混合高斯模型(GMM)和加权期望最大化(WEM)算法的ML框架来预测潜在的网络拥塞。然后,基于预测的蜂窝通信量,研究了无人机的最优部署问题,以使满足下行链路用户通信需求所需的发射功率最小化,同时也使无人机的机动性所需的功率最小化。为此,首先基于公平性原则推导出各无人机服务区域的最优划分。接下来,推导出使总耗电量最小的每架无人机的最优位置。仿真结果表明,与无ML预测的无人机最优部署相比,本文提出的ML方法可以降低所需的下行发射功率,提高功率效率20%以上。
---
英文标题:
《Machine Learning for Predictive On-Demand Deployment of UAVs for
  Wireless Communications》
---
作者:
Qianqian Zhang, Mohammad Mozaffari, Walid Saad, Mehdi Bennis, Merouane
  Debbah
---
最新提交年份:
2018
---
分类信息:
一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Information Theory        信息论
分类描述:Covers theoretical and experimental aspects of information theory and coding. Includes material in ACM Subject Class E.4 and intersects with H.1.1.
涵盖信息论和编码的理论和实验方面。包括ACM学科类E.4中的材料,并与H.1.1有交集。
--
一级分类:Mathematics        数学
二级分类:Information Theory        信息论
分类描述:math.IT is an alias for cs.IT. Covers theoretical and experimental aspects of information theory and coding.
它是cs.it的别名。涵盖信息论和编码的理论和实验方面。
--
---
英文摘要:
  In this paper, a novel machine learning (ML) framework is proposed for enabling a predictive, efficient deployment of unmanned aerial vehicles (UAVs), acting as aerial base stations (BSs), to provide on-demand wireless service to cellular users. In order to have a comprehensive analysis of cellular traffic, an ML framework based on a Gaussian mixture model (GMM) and a weighted expectation maximization (WEM) algorithm is introduced to predict the potential network congestion. Then, the optimal deployment of UAVs is studied to minimize the transmit power needed to satisfy the communication demand of users in the downlink, while also minimizing the power needed for UAV mobility, based on the predicted cellular traffic. To this end, first, the optimal partition of service areas of each UAV is derived, based on a fairness principle. Next, the optimal location of each UAV that minimizes the total power consumption is derived. Simulation results show that the proposed ML approach can reduce the required downlink transmit power and improve the power efficiency by over 20%, compared with an optimal deployment of UAVs with no ML prediction. 
---
PDF链接:
https://arxiv.org/pdf/1805.00061