摘要翻译:
假设G是Z/p^n\r×Z/m的半直积,其中p是素数,m相对于p是素数。假定K是特征p>0的局部域。主要结果给出了K的广义分枝G-Galois扩张存在分枝过滤的充要条件,并证明了K的G-Galois扩张存在一个参数空间,该空间的维数仅依赖于分枝过滤。我们给出了p^3次K的野循环扩张的显式方程。
---
英文标题:
《Wild cyclic-by-tame extensions》
---
作者:
Andrew Obus and Rachel Pries
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Suppose G is a semi-direct product of the form Z/p^n \rtimes Z/m where p is prime and m is relatively prime to p. Suppose K is a local field of characteristic p > 0. The main result states necessary and sufficient conditions on the ramification filtrations that occur for wildly ramified G-Galois extensions of K. In addition, we prove that there exists a parameter space for G-Galois extensions of K with given ramification filtration whose dimension depends only on the ramification filtration. We provide explicit equations for wild cyclic extensions of K of degree p^3.
---
PDF链接:
https://arxiv.org/pdf/0807.4790