摘要翻译:
本文的主要目的是证明两个格式的三角化奇点范畴的幂等完备性是等价的,如果这两个格式沿奇点的形式完备性是同构的,则这两个格式的三角化奇点范畴的幂等完备性是等价的。我们还讨论了稠密子范畴上的Thomason定理及其与负k-理论的关系。
---
英文标题:
《Formal completions and idempotent completions of triangulated categories
of singularities》
---
作者:
Dmitri Orlov
---
最新提交年份:
2009
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Category Theory 范畴理论
分类描述:Enriched categories, topoi, abelian categories, monoidal categories, homological algebra
丰富范畴,topoi,abelian范畴,monoidal范畴,同调代数
--
---
英文摘要:
The main goal of this paper is to prove that the idempotent completions of the triangulated categories of singularities of two schemes are equivalent if the formal completions of these schemes along singularities are isomorphic. We also discuss Thomason theorem on dense subcategories and a relation to the negative K-theory.
---
PDF链接:
https://arxiv.org/pdf/0901.1859