全部版块 我的主页
论坛 经济学人 二区 外文文献专区
285 0
2022-04-12
摘要翻译:
答案集编程(ASP)是一种声明性问题解决的范式,它首先将问题以统一的方式形式化为规则集,即答案集程序,然后通过计算程序的答案集来解决问题。可满足性模理论(SMT)框架遵循类似的建模哲学,但其语法基于命题逻辑的扩展而不是规则。最近,从答案集程序到差分逻辑的转换被提供了--允许使用特定的SMT求解器来计算答案集。本文针对另一个SMT片段,即基于固定宽度位向量理论的SMT片段,对其翻译进行了修正。因此,更多的SMT求解器可以用于计算答案集的任务。文中还报道了初步的实验比较结果。它们提出了一个类似于通过差分逻辑实现的性能水平。
---
英文标题:
《Translating Answer-Set Programs into Bit-Vector Logic》
---
作者:
Mai Nguyen, Tomi Janhunen, Ilkka Niemel\"a
---
最新提交年份:
2011
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Logic in Computer Science        计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--

---
英文摘要:
  Answer set programming (ASP) is a paradigm for declarative problem solving where problems are first formalized as rule sets, i.e., answer-set programs, in a uniform way and then solved by computing answer sets for programs. The satisfiability modulo theories (SMT) framework follows a similar modelling philosophy but the syntax is based on extensions of propositional logic rather than rules. Quite recently, a translation from answer-set programs into difference logic was provided---enabling the use of particular SMT solvers for the computation of answer sets. In this paper, the translation is revised for another SMT fragment, namely that based on fixed-width bit-vector theories. Thus, even further SMT solvers can be harnessed for the task of computing answer sets. The results of a preliminary experimental comparison are also reported. They suggest a level of performance which is similar to that achieved via difference logic.
---
PDF链接:
https://arxiv.org/pdf/1108.5837
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群