摘要翻译:
我们引入了一个相关的静态模型,并研究了一个渗流转变。该模型是对静态模型的改进,具有分类度-度相关的特点。随着边缘密度的变化,网络经历了一个渗流转变。在整个非渗流相中,团簇平均尺寸具有弱奇异性,团簇序参量和团簇尺寸分布具有幂律标度。这些结果表明,不同程度的相关性产生了一种全局结构相关性,这种相关性与复杂网络的渗流临界现象有关。
---
英文标题:
《Percolation transition in correlated static model》
---
作者:
Sang-Woo Kim and Jae Dong Noh
---
最新提交年份:
2008
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We introduce a correlated static model and investigate a percolation transition. The model is a modification of the static model and is characterized by assortative degree-degree correlation. As one varies the edge density, the network undergoes a percolation transition. The percolation transition is characterized by a weak singular behavior of the mean cluster size and power-law scalings of the percolation order parameter and the cluster size distribution in the entire non-percolating phase. These results suggest that the assortative degree-degree correlation generates a global structural correlation which is relevant to the percolation critical phenomena of complex networks.
---
PDF链接:
https://arxiv.org/pdf/802.2644