摘要翻译:
目标检测、基于检测的跟踪和事件识别的共同内部结构和算法组织有助于将这三个组成部分集成在一起的通用方法。这支持这些组件之间的多方向信息流,允许对象检测影响跟踪和事件识别,以及事件识别影响跟踪和对象检测。组合的性能可以超过组件单独的性能。这可以用线性渐近复杂度来完成。
---
英文标题:
《Simultaneous Object Detection, Tracking, and Event Recognition》
---
作者:
Andrei Barbu, Aaron Michaux, Siddharth Narayanaswamy, and Jeffrey Mark
Siskind
---
最新提交年份:
2012
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence
人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
The common internal structure and algorithmic organization of object detection, detection-based tracking, and event recognition facilitates a general approach to integrating these three components. This supports multidirectional information flow between these components allowing object detection to influence tracking and event recognition and event recognition to influence tracking and object detection. The performance of the combination can exceed the performance of the components in isolation. This can be done with linear asymptotic complexity.
---
PDF链接:
https://arxiv.org/pdf/1204.2741