英文标题:
《Human Social Cycling Spectrum》
---
作者:
Wang Zhijian, Yao Qingmei
---
最新提交年份:
2021
---
英文摘要:
This paper investigates the reality and accuracy of evolutionary game dynamics theory in human game behavior experiments. In classical game theory, the central concept is Nash equilibrium, which reality and accuracy has been well known since the firstly illustration by the O\'Neill game experiment in 1987. In game dynamics theory, the central approach is dynamics equations, however, its reality and accuracy is rare known, especially in high dimensional games. By develop a new approach, namely the eigencycle approach, with the eigenvectors from the game dynamics equations, we discover the fine structure of the cycles in the same experiments. We show that, the eigencycle approach can increase the accuracy by an order of magnitude in the human dynamic hehavior data. As the eigenvector is fundamental in dynamical systems theory which has applications in natural, social, and virtual worlds, the power of the eigencycles is expectedly. Inspired by the high dimensional eigencycles, we suggest that, the mathematical concept, namely \'invariant manifolds\', could be a candidate as the central concept for the game dynamics theory, like the fixed point concept for classical game theory.
---
中文摘要:
本文研究了进化博弈动力学理论在人类博弈行为实验中的真实性和准确性。经典博弈论的核心概念是纳什均衡,自1987年奥尼尔博弈实验首次阐明纳什均衡以来,纳什均衡的真实性和准确性已为人们所熟知。在博弈动力学理论中,主要的方法是动力学方程,然而,它的真实性和准确性是鲜为人知的,尤其是在高维博弈中。通过发展一种新的方法,即特征环方法,利用博弈动力学方程中的特征向量,我们在相同的实验中发现了循环的精细结构。我们表明,本征周期方法可以将人类动态行为数据的精度提高一个数量级。由于本征向量是动力系统理论的基础,在自然、社会和虚拟世界中都有应用,因此本征环的威力是令人期待的。受高维特征环的启发,我们认为,数学概念,即“不变流形”,可以作为博弈动力学理论的中心概念,就像经典博弈论的不动点概念一样。
---
分类信息:
一级分类:Economics 经济学
二级分类:Theoretical Economics 理论经济学
分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice.
包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。
--
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
---
PDF下载:
-->