英文标题:
《Asymptotic Normality for Multivariate Random Forest Estimators》
---
作者:
Kevin Li
---
最新提交年份:
2021
---
英文摘要:
Regression trees and random forests are popular and effective non-parametric estimators in practical applications. A recent paper by Athey and Wager shows that the random forest estimate at any point is asymptotically Gaussian; in this paper, we extend this result to the multivariate case and show that the vector of estimates at multiple points is jointly normal. Specifically, the covariance matrix of the limiting normal distribution is diagonal, so that the estimates at any two points are independent in sufficiently deep trees. Moreover, the off-diagonal term is bounded by quantities capturing how likely two points belong to the same partition of the resulting tree. Our results relies on certain a certain stability property when constructing splits, and we give examples of splitting rules for which this assumption is and is not satisfied. We test our proposed covariance bound and the associated coverage rates of confidence intervals in numerical simulations.
---
中文摘要:
回归树和随机林是实际应用中常用的有效非参数估计方法。Athey和Wager最近的一篇论文表明,任意点的随机森林估计都是渐近高斯的;在本文中,我们将这个结果推广到多元情况,并证明了多个点的估计向量是联合正态的。具体来说,极限正态分布的协方差矩阵是对角的,因此在足够深的树中,任意两点的估计都是独立的。此外,非对角项的范围是由捕捉两点属于结果树的同一分区的可能性的数量确定的。在构造分裂时,我们的结果依赖于一定的稳定性,并且我们给出了分裂规则的例子,对于这些规则,我们的假设是和不满足的。我们在数值模拟中测试了我们提出的协方差界和相关的置信区间覆盖率。
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
PDF下载:
-->