英文标题:
《Bias-Aware Inference in Regularized Regression Models》
---
作者:
Timothy B. Armstrong and Michal Koles\\\'ar and Soonwoo Kwon
---
最新提交年份:
2020
---
英文摘要:
We consider inference on a regression coefficient under a constraint on the magnitude of the control coefficients. We show that a class of estimators based on an auxiliary regularized regression of the regressor of interest on control variables exactly solves a tradeoff between worst-case bias and variance. We derive \"bias-aware\" confidence intervals (CIs) based on these estimators, which take into account possible bias when forming the critical value. We show that these estimators and CIs are near-optimal in finite samples for mean squared error and CI length. Our finite-sample results are based on an idealized setting with normal regression errors with known homoskedastic variance, and we provide conditions for asymptotic validity with unknown and possibly heteroskedastic error distribution. Focusing on the case where the constraint on the magnitude of control coefficients is based on an $\\ell_p$ norm ($p\\ge 1$), we derive rates of convergence for optimal estimators and CIs under high-dimensional asymptotics that allow the number of regressors to increase more quickly than the number of observations.
---
中文摘要:
我们考虑在控制系数大小的约束下对回归系数的推断。我们证明了一类基于控制变量相关回归子的辅助正则回归的估计量精确地解决了最坏情况偏差和方差之间的折衷。我们基于这些估计器推导出“偏差感知”置信区间(CI),在形成临界值时考虑了可能的偏差。我们证明,对于均方误差和CI长度,这些估计量和CI在有限样本中是接近最优的。我们的有限样本结果基于正态回归误差和已知同态方差的理想设置,我们提供了未知和可能异方差误差分布的渐近有效性条件。针对控制系数大小的约束基于$\\ell_p$范数($p\\ge 1$)的情况,我们推导了高维渐近条件下最优估计量和CI的收敛速度,这使得回归器的数量比观测值的数量增加得更快。
---
分类信息:
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
---
PDF下载:
-->