英文标题:
《Predicting financial markets with Google Trends and not so random
keywords》
---
作者:
Damien Challet, Ahmed Bel Hadj Ayed
---
最新提交年份:
2014
---
英文摘要:
We check the claims that data from Google Trends contain enough data to predict future financial index returns. We first discuss the many subtle (and less subtle) biases that may affect the backtest of a trading strategy, particularly when based on such data. Expectedly, the choice of keywords is crucial: by using an industry-grade backtesting system, we verify that random finance-related keywords do not to contain more exploitable predictive information than random keywords related to illnesses, classic cars and arcade games. We however show that other keywords applied on suitable assets yield robustly profitable strategies, thereby confirming the intuition of Preis et al. (2013)
---
中文摘要:
我们检查了谷歌趋势数据包含足够数据预测未来金融指数回报的说法。我们首先讨论可能影响交易策略回溯测试的许多微妙(以及不那么微妙)的偏见,尤其是基于此类数据时。诚然,关键词的选择至关重要:通过使用行业级的回溯测试系统,我们验证了与金融相关的随机关键词不会比与疾病、经典汽车和街机游戏相关的随机关键词包含更多可利用的预测信息。然而,我们发现,应用在合适资产上的其他关键词产生了强劲的盈利策略,从而证实了Preis等人(2013)的直觉
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->