英文标题:
《Copulas and time series with long-ranged dependences》
---
作者:
R\\\'emy Chicheportiche, Anirban Chakraborti
---
最新提交年份:
2013
---
英文摘要:
We review ideas on temporal dependences and recurrences in discrete time series from several areas of natural and social sciences. We revisit existing studies and redefine the relevant observables in the language of copulas (joint laws of the ranks). We propose that copulas provide an appropriate mathematical framework to study non-linear time dependences and related concepts - like aftershocks, Omori law, recurrences, waiting times. We also critically argue using this global approach that previous phenomenological attempts involving only a long-ranged autocorrelation function lacked complexity in that they were essentially mono-scale.
---
中文摘要:
我们回顾了自然科学和社会科学若干领域关于离散时间序列的时间依赖性和重现性的观点。我们回顾了现有的研究,并重新定义了连接词(秩的联合定律)语言中的相关观察值。我们认为连接函数提供了一个合适的数学框架来研究非线性时间依赖性和相关概念,如余震、大森定律、复发、等待时间。我们还批判性地认为,使用这种全局方法,以前只涉及长程自相关函数的现象学尝试缺乏复杂性,因为它们本质上是单尺度的。
---
分类信息:
一级分类:Physics 物理学
二级分类:Data Analysis, Statistics and Probability
数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->