英文标题:
《A Bayesian Beta Markov Random Field Calibration of the Term Structure of
Implied Risk Neutral Densities》
---
作者:
Roberto Casarin and Fabrizio Leisen and German Molina and Enrique ter
Horst
---
最新提交年份:
2014
---
英文摘要:
We build on the work in Fackler and King 1990, and propose a more general calibration model for implied risk neutral densities. Our model allows for the joint calibration of a set of densities at different maturities and dates through a Bayesian dynamic Beta Markov Random Field. Our approach allows for possible time dependence between densities with the same maturity, and for dependence across maturities at the same point in time. This approach to the problem encompasses model flexibility, parameter parsimony and, more importantly, information pooling across densities.
---
中文摘要:
我们在Fackler和King 1990的工作基础上,提出了一个更通用的隐含风险中性密度校准模型。我们的模型允许通过贝叶斯动态贝塔-马尔可夫随机场对不同成熟度和日期的一组密度进行联合校准。我们的方法考虑到具有相同成熟度的密度之间可能存在的时间依赖性,以及在同一时间点上不同成熟度之间的依赖性。解决这个问题的方法包括模型的灵活性、参数的节约,更重要的是,跨密度的信息共享。
---
分类信息:
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->