英文标题:
《Uncovering the evolution of non-stationary stochastic variables: the
  example of asset volume-price fluctuations》
---
作者:
Paulo Rocha, Frank Raischel, Jo\\~ao P. Boto, Pedro G. Lind
---
最新提交年份:
2015
---
英文摘要:
  We present a framework for describing the evolution of stochastic observables having a non-stationary distribution of values. The framework is applied to empirical volume-prices from assets traded at the New York stock exchange. Using Kullback-Leibler divergence we evaluate the best model out from four biparametric models standardly used in the context of financial data analysis. In our present data sets we conclude that the inverse $\\Gamma$-distribution is a good model, particularly for the distribution tail of the largest volume-price fluctuations. Extracting the time-series of the corresponding parameter values we show that they evolve in time as stochastic variables themselves. For the particular case of the parameter controlling the volume-price distribution tail we are able to extract an Ornstein-Uhlenbeck equation which describes the fluctuations of the largest volume-prices observed in the data. Finally, we discuss how to bridge from the stochastic evolution of the distribution parameters to the stochastic evolution of the (non-stationary) observable and put our conclusions into perspective for other applications in geophysics and biology. 
---
中文摘要:
我们提出了一个框架来描述具有非平稳分布的随机观测值的演化。该框架适用于纽约证券交易所交易资产的经验成交量价格。利用库尔贝克-莱布勒散度,我们从金融
数据分析中标准使用的四个双参数模型中评估出最佳模型。在我们目前的数据集中,我们得出结论,逆$\\Gamma$分布是一个很好的模型,尤其是对于最大量价波动的分布尾部。通过提取相应参数值的时间序列,我们证明了它们本身是随时间演化的随机变量。对于控制成交量价格分布尾部的参数的特殊情况,我们可以提取一个描述数据中观察到的最大成交量价格波动的Ornstein-Uhlenbeck方程。最后,我们讨论了如何从分布参数的随机演化过渡到(非平稳)可观测的随机演化,并展望了我们的结论在地球物理和生物学中的其他应用。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Physics        物理学
二级分类:Data Analysis, Statistics and Probability        数据分析、统计与概率
分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties.
物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。
--
---
PDF下载:
-->