英文标题:
《Symmetry reduction and exact solutions of the non-linear Black--Scholes
equation》
---
作者:
Oleksii Patsiuk, Sergii Kovalenko
---
最新提交年份:
2018
---
英文摘要:
In this paper, we investigate the non-linear Black--Scholes equation: $$u_t+ax^2u_{xx}+bx^3u_{xx}^2+c(xu_x-u)=0,\\quad a,b>0,\\ c\\geq0.$$ and show that the one can be reduced to the equation $$u_t+(u_{xx}+u_x)^2=0$$ by an appropriate point transformation of variables. For the resulting equation, we study the group-theoretic properties, namely, we find the maximal algebra of invariance of its in Lie sense, carry out the symmetry reduction and seek for a number of exact group-invariant solutions of the equation. Using the results obtained, we get a number of exact solutions of the Black--Scholes equation under study and apply the ones to resolving several boundary value problems with appropriate from the economic point of view terminal and boundary conditions.
---
中文摘要:
本文研究了非线性Black-Scholes方程:$$u_t+ax^2u_{xx}+bx^3u_{xx}^2+c(xu_x-u)=0、\\quad a,b>0、\\c\\geq0.$$并证明了通过适当的变量点变换,这个方程可以简化为$$u_t+(u_{xx}+u_x)^2=0$$。对于得到的方程,我们研究了它的群论性质,即在李意义下找到其不变性的极大代数,进行对称约化,并寻求方程的若干精确群不变解。利用所得结果,我们得到了所研究的Black-Scholes方程的一些精确解,并从经济角度和边界条件出发,将这些精确解应用于解决几个具有适当边界条件的边值问题。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->