英文标题:
《Noise Fit, Estimation Error and a Sharpe Information Criterion》
---
作者:
Dirk Paulsen and Jakob S\\\"ohl
---
最新提交年份:
2019
---
英文摘要:
  When the in-sample Sharpe ratio is obtained by optimizing over a k-dimensional parameter space, it is a biased estimator for what can be expected on unseen data (out-of-sample). We derive (1) an unbiased estimator adjusting for both sources of bias: noise fit and estimation error. We then show (2) how to use the adjusted Sharpe ratio as model selection criterion analogously to the Akaike Information Criterion (AIC). Selecting a model with the highest adjusted Sharpe ratio selects the model with the highest estimated out-of-sample Sharpe ratio in the same way as selection by AIC does for the log-likelihood as measure of fit. 
---
中文摘要:
当通过在k维参数空间上进行优化获得样本内夏普比时,它是对未知数据(样本外)的有偏估计。我们推导了(1)一个无偏估计器,该估计器同时调整了两个偏差来源:噪声拟合和估计误差。然后,我们展示(2)如何使用调整后的夏普比率作为模型选择标准,类似于Akaike信息标准(AIC)。选择具有最高调整夏普比的模型,选择具有最高估计样本外夏普比的模型,方法与AIC选择对数似然作为拟合度量的方法相同。
---
分类信息:
一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
---
PDF下载:
-->