英文标题:
《Pathwise Iteration for Backward SDEs》
---
作者:
Christian Bender, Christian Gaertner, Nikolaus Schweizer
---
最新提交年份:
2016
---
英文摘要:
  We introduce a novel numerical approach for a class of stochastic dynamic programs which arise as discretizations of backward stochastic differential equations or semi-linear partial differential equations. Solving such dynamic programs numerically requires the approximation of nested conditional expectations, i.e., iterated integrals of previous approximations. Our approach allows us to compute and iteratively improve upper and lower bounds on the true solution starting from an arbitrary and possibly crude input approximation. We demonstrate the benefits of our approach in a high dimensional financial application. 
---
中文摘要:
我们介绍了一种新的数值方法来求解一类随机动态规划,这些规划是作为倒向随机微分方程或半线性偏微分方程的离散化而出现的。数值求解此类动态程序需要近似嵌套条件期望,即先前近似的迭代积分。我们的方法允许我们从任意且可能粗糙的输入近似开始计算并迭代改进真实解的上下界。我们在高维金融应用程序中演示了我们的方法的好处。
---
分类信息:
一级分类:Mathematics        数学
二级分类:Numerical Analysis        数值分析
分类描述:Numerical algorithms for problems in analysis and algebra, scientific computation
分析和代数问题的数值算法,科学计算
--
一级分类:Mathematics        数学
二级分类:Probability        概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance        数量金融学
二级分类:Computational Finance        计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->