英文标题:
《A geometric approach to the transfer problem for a finite number of
traders》
---
作者:
Tomohiro Uchiyama
---
最新提交年份:
2017
---
英文摘要:
We present a complete characterization of the classical transfer problem for an exchange economy with an arbitrary finite number of traders. Our method is geometric, using an equilibrium manifold developed by Debreu, Mas-Colell, and Balasko. We show that for a regular equilibrium the transfer problem arises if and only if the index at the equilibrium is $-1$. This implies that the transfer problem does not happen if the equilibrium is Walras tatonnement stable. Our result generalizes Balasko\'s analogous result for an exchange economy with two traders.
---
中文摘要:
我们给出了具有任意有限个交易者的交换经济的经典转移问题的一个完整刻画。我们的方法是几何方法,使用Debreu、Mas Colell和Balasko开发的平衡流形。我们证明,对于正则均衡,当且仅当均衡处的指数为$-1$时,才会出现转移问题。这意味着,如果平衡点是Walras-tatonnement稳定的,转移问题就不会发生。我们的结果推广了Balasko对于有两个交易者的交换经济的类似结果。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Economics 经济学
分类描述:q-fin.EC is an alias for econ.GN. Economics, including micro and macro economics, international economics, theory of the firm, labor economics, and other economic topics outside finance
q-fin.ec是econ.gn的别名。经济学,包括微观和宏观经济学、国际经济学、企业理论、劳动经济学和其他金融以外的经济专题
--
---
PDF下载:
-->