英文标题:
《Anticipated Backward SDEs with Jumps and quadratic-exponential growth
drivers》
---
作者:
Masaaki Fujii, Akihiko Takahashi
---
最新提交年份:
2018
---
英文摘要:
In this paper, we study a class of Anticipated Backward Stochastic Differential Equations (ABSDE) with jumps. The solution of the ABSDE is a triple $(Y,Z,\\psi)$ where $Y$ is a semimartingale, and $(Z,\\psi)$ are the diffusion and jump coefficients. We allow the driver of the ABSDE to have linear growth on the uniform norm of $Y$\'s future paths, as well as quadratic and exponential growth on the spot values of $(Z,\\psi)$, respectively. The existence of the unique solution is proved for Markovian and non-Markovian settings with different structural assumptions on the driver. In the former case, some regularities on $(Z,\\psi)$ with respect to the forward process are also obtained.
---
中文摘要:
本文研究了一类带跳的预期倒向随机微分方程(ABSDE)。ABSDE的解是三元$(Y,Z,psi)$,其中$Y$是半鞅,$(Z,psi)$是扩散系数和跳跃系数。我们允许ABSDE的驱动因素在$Y$的未来路径的统一范数上具有线性增长,以及在$(Z,\\ psi)$的现货值上具有二次和指数增长。在不同的驱动结构假设下,证明了马尔可夫和非马尔可夫环境下唯一解的存在性。在前一种情况下,还得到了$(Z,,,psi)$上关于向前过程的一些正则性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->