英文标题:
《Constructing Metropolis-Hastings proposals using damped BFGS updates》
---
作者:
Johan Dahlin, Adrian Wills, Brett Ninness
---
最新提交年份:
2018
---
英文摘要:
The computation of Bayesian estimates of system parameters and functions of them on the basis of observed system performance data is a common problem within system identification. This is a previously studied issue where stochastic simulation approaches have been examined using the popular Metropolis--Hastings (MH) algorithm. This prior study has identified a recognised difficulty of tuning the {proposal distribution so that the MH method provides realisations with sufficient mixing to deliver efficient convergence. This paper proposes and empirically examines a method of tuning the proposal using ideas borrowed from the numerical optimisation literature around efficient computation of Hessians so that gradient and curvature information of the target posterior can be incorporated in the proposal.
---
中文摘要:
基于观测到的系统性能数据计算系统参数及其功能的贝叶斯估计是系统辨识中的一个常见问题。这是之前研究的一个问题,其中使用流行的Metropolis-Hastings(MH)算法对随机模拟方法进行了研究。之前的这项研究发现了调整{建议分布,因此MH方法提供了充分混合的实现,以提供有效的收敛。本文提出并实证检验了一种方法,使用从数值优化文献中借用的有关Hessians有效计算的思想来调整建议,以便将目标后验的梯度和曲率信息纳入提议
---
分类信息:
一级分类:Statistics 统计学
二级分类:Computation 计算
分类描述:Algorithms, Simulation, Visualization
算法、模拟、可视化
--
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
---
PDF下载:
-->