英文标题:
《A subordinated CIR intensity model with application to Wrong-Way risk
CVA》
---
作者:
Cheikh Mbaye and Fr\\\'ed\\\'eric Vrins
---
最新提交年份:
2018
---
英文摘要:
Credit Valuation Adjustment (CVA) pricing models need to be both flexible and tractable. The survival probability has to be known in closed form (for calibration purposes), the model should be able to fit any valid Credit Default Swap (CDS) curve, should lead to large volatilities (in line with CDS options) and finally should be able to feature significant Wrong-Way Risk (WWR) impact. The Cox-Ingersoll-Ross model (CIR) combined with independent positive jumps and deterministic shift (JCIR++) is a very good candidate : the variance (and thus covariance with exposure, i.e. WWR) can be increased with the jumps, whereas the calibration constraint is achieved via the shift. In practice however, there is a strong limit on the model parameters that can be chosen, and thus on the resulting WWR impact. This is because only non-negative shifts are allowed for consistency reasons, whereas the upwards jumps of the JCIR++ need to be compensated by a downward shift. To limit this problem, we consider the two-side jump model recently introduced by Mendoza-Arriaga \\& Linetsky, built by time-changing CIR intensities. In a multivariate setup like CVA, time-changing the intensity partly kills the potential correlation with the exposure process and destroys WWR impact. Moreover, it can introduce a forward looking effect that can lead to arbitrage opportunities. In this paper, we use the time-changed CIR process in a way that the above issues are avoided. We show that the resulting process allows to introduce a large WWR effect compared to the JCIR++ model. The computation cost of the resulting Monte Carlo framework is reduced by using an adaptive control variate procedure.
---
中文摘要:
信用估值调整(CVA)定价模型需要既灵活又易于处理。生存概率必须以封闭形式已知(出于校准目的),该模型应能够拟合任何有效的信用违约掉期(CDS)曲线,应导致较大的波动性(与CDS期权一致),并最终应能够表现出显著的错向风险(WWR)影响。Cox-Ingersoll-Ross模型(CIR)结合了独立的正跳跃和确定性偏移(JCIR++),是一个很好的候选者:方差(以及与曝光的协方差,即WWR)可以随着跳跃而增加,而校准约束是通过偏移实现的。然而,在实践中,对可选择的模型参数以及由此产生的WWR影响有很大的限制。这是因为出于一致性原因,只允许非负移位,而JCIR++的向上跳跃需要通过向下移位进行补偿。为了限制这个问题,我们考虑了最近由门多萨·阿里加(Mendoza Arriaga)和莱因茨基(Linetsky)引入的双边跳跃模型,该模型是由随时间变化的CIR强度建立的。在CVA等多变量设置中,时间改变强度部分消除了与暴露过程的潜在相关性,并破坏了WWR影响。此外,它可以引入前瞻性效应,从而带来套利机会。在本文中,我们使用时变CIR过程来避免上述问题。我们表明,与JCIR++模型相比,生成的过程允许引入较大的WWR效应。通过使用自适应控制变量程序,降低了蒙特卡罗框架的计算成本。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
---
PDF下载:
-->