英文标题:
《Dynamic programming for optimal stopping via pseudo-regression》
---
作者:
Christian Bayer, Martin Redmann, John Schoenmakers
---
最新提交年份:
2019
---
英文摘要:
We introduce new variants of classical regression-based algorithms for optimal stopping problems based on computation of regression coefficients by Monte Carlo approximation of the corresponding $L^2$ inner products instead of the least-squares error functional. Coupled with new proposals for simulation of the underlying samples, we call the approach \"pseudo regression\". A detailed convergence analysis is provided and it is shown that the approach asymptotically leads to less computational cost for a pre-specified error tolerance, hence to lower complexity. The method is justified by numerical examples.
---
中文摘要:
我们引入了基于回归的经典算法的新变体,该算法基于通过相应的$L^2$内积的蒙特卡罗近似计算回归系数,而不是最小二乘误差函数。再加上模拟潜在样本的新建议,我们称这种方法为“伪回归”。文中给出了详细的收敛性分析,结果表明,对于预先指定的误差容限,该方法渐进地减少了计算量,从而降低了复杂性。数值算例验证了该方法的正确性。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Computational Finance 计算金融学
分类描述:Computational methods, including Monte Carlo, PDE, lattice and other numerical methods with applications to financial modeling
计算方法,包括蒙特卡罗,偏微分方程,格子和其他数值方法,并应用于金融建模
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->