英文标题:
《Affine Jump-Diffusions: Stochastic Stability and Limit Theorems》
---
作者:
Xiaowei Zhang and Peter W. Glynn
---
最新提交年份:
2018
---
英文摘要:
Affine jump-diffusions constitute a large class of continuous-time stochastic models that are particularly popular in finance and economics due to their analytical tractability. Methods for parameter estimation for such processes require ergodicity in order establish consistency and asymptotic normality of the associated estimators. In this paper, we develop stochastic stability conditions for affine jump-diffusions, thereby providing the needed large-sample theoretical support for estimating such processes. We establish ergodicity for such models by imposing a `strong mean reversion\' condition and a mild condition on the distribution of the jumps, i.e. the finiteness of a logarithmic moment. Exponential ergodicity holds if the jumps have a finite moment of a positive order. In addition, we prove strong laws of large numbers and functional central limit theorems for additive functionals for this class of models.
---
中文摘要:
仿射跳跃扩散构成了一大类连续时间随机模型,由于其分析的可处理性,在金融和经济学中特别流行。这类过程的参数估计方法需要遍历性,以便建立相关估计量的一致性和渐近正态性。在本文中,我们建立了仿射跳跃扩散的随机稳定性条件,从而为估计这类过程提供了所需的大样本理论支持。我们通过对跳跃分布施加“强均值回归”条件和温和条件,即对数矩的有限性,建立了此类模型的遍历性。如果跳跃具有正阶的有限矩,则指数遍历性成立。此外,我们还证明了这类模型的加性泛函的强大数定律和泛函中心极限定理。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
PDF下载:
-->