英文标题:
《Stochastic derivative estimation for max-stable random fields》
---
作者:
Erwan Koch and Christian Y. Robert
---
最新提交年份:
2020
---
英文摘要:
We consider expected performances based on max-stable random fields and we are interested in their derivatives with respect to the spatial dependence parameters of those fields. Max-stable fields, such as the Brown--Resnick and Smith fields, are very popular in spatial extremes. We focus on the two most popular unbiased stochastic derivative estimation approaches: the likelihood ratio method (LRM) and the infinitesimal perturbation analysis (IPA). LRM requires the multivariate density of the max-stable field to be explicit, and IPA necessitates the computation of the derivative with respect to the parameters for each simulated value. We propose convenient and tractable conditions ensuring the validity of LRM and IPA in the cases of the Brown--Resnick and Smith field, respectively. Obtaining such conditions is intricate owing to the very structure of max-stable fields. Then we focus on risk and dependence measures, which constitute one of the several frameworks where our theoretical results can be useful. We perform a simulation study which shows that both LRM and IPA perform well in various configurations, and provide a real case study that is valuable for the insurance industry.
---
中文摘要:
我们考虑了基于最大稳定随机场的预期性能,并且我们对这些随机场的空间相关参数的导数感兴趣。最大稳定场,如Brown-Resnick和Smith场,在空间极值中非常流行。我们关注两种最流行的无偏随机导数估计方法:似然比法(LRM)和无穷小扰动分析(IPA)。LRM要求最大稳定场的多变量密度是明确的,IPA要求计算每个模拟值的参数导数。我们分别在Brown-Resnick和Smith油田的案例中提出了确保LRM和IPA有效性的方便和易处理的条件。由于最大稳定场的结构,获得这样的条件是复杂的。然后,我们关注风险和依赖性度量,这是我们的理论结果可能有用的几个框架之一。我们进行了一项仿真研究,结果表明LRM和IPA在各种配置下都表现良好,并提供了一个对保险业有价值的真实案例研究。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、
数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
PDF下载:
-->