英文标题:
《Ordering the smallest claim amounts from two sets of interdependent
heterogeneous portfolios》
---
作者:
Hossein Nadeb, Hamzeh Torabi, Ali Dolati
---
最新提交年份:
2018
---
英文摘要:
Let $ X_{\\lambda_1},\\ldots,X_{\\lambda_n}$ be a set of dependent and non-negative random variables share a survival copula and let $Y_i= I_{p_i}X_{\\lambda_i}$, $i=1,\\ldots,n$, where $I_{p_1},\\ldots,I_{p_n}$ be independent Bernoulli random variables independent of $X_{\\lambda_i}$\'s, with ${\\rm E}[I_{p_i}]=p_i$, $i=1,\\ldots,n$. In actuarial sciences, $Y_i$ corresponds to the claim amount in a portfolio of risks. This paper considers comparing the smallest claim amounts from two sets of interdependent portfolios, in the sense of usual and likelihood ratio orders, when the variables in one set have the parameters $\\lambda_1,\\ldots,\\lambda_n$ and $p_1,\\ldots,p_n$ and the variables in the other set have the parameters $\\lambda^{*}_1,\\ldots,\\lambda^{*}_n$ and $p^*_1,\\ldots,p^*_n$. Also, we present some bounds for survival function of the smallest claim amount in a portfolio. To illustrate validity of the results, we serve some applicable models.
---
中文摘要:
设$X{\\lambda\\u 1}、\\ldots,X{\\lambda\\u n}$是一组相依和非负随机变量共享一个生存copula,并设$Y\\u i=i{p\\u i}X{\\lambda\\u i}$,$i=1、\\ldots,n$,其中$i{p\\u 1}、\\ldots,i{p\\n}$是独立于$X{\\lambda\\u i}的伯努利随机变量。$\'s,其中${\\rm E}[i\\uu{p\\u i}]=p\\u i$,$i=1,\\ldots,n$。在精算学中,Y\\u i$对应于风险组合中的索赔金额。本文考虑在通常和似然比顺序的意义下,当一组变量的参数为$\\ lambda\\u 1、\\ldots、\\lambda\\u n$和$p\\u 1、\\ldots、p\\u n$时,比较两组相互依存投资组合的最小索赔额,另一组变量的参数为$\\ lambda ^{*}u 1、\\ldots、\\lambda ^{*}n$和$p ^*\\u 1、\\ldots、p ^*\\u n$。同时,我们给出了投资组合中最小索赔额的生存函数的一些界。为了说明结果的有效性,我们提供了一些适用的模型。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
一级分类:Statistics 统计学
二级分类:Applications 应用程序
分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences
生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学
--
---
PDF下载:
-->