英文标题:
《Time-inconsistency with rough volatility》
---
作者:
Bingyan Han and Hoi Ying Wong
---
最新提交年份:
2020
---
英文摘要:
Motivated by recent advances in rough volatility, this paper investigates the impact of roughness on equilibrium feedback strategies for time-inconsistent objectives. Under a general framework embracing non-Markovian and non-semimartingale models, we develop an extended path-dependent Hamilton-Jacobi-Bellman (PHJB) equation system. A verification theorem is provided. By deriving explicit solutions to three problems, including mean-variance portfolio problem (MVP) with constant risk aversion, MVP for log-returns, and an investment/consumption problem with non-exponential discounting, we present that volatility roughness adjusts the equilibrium strategies considerably, up to 40% in certain settings. Since rough volatility models capture the near-term downside risk by fitting the volatility skews, we interpret the adjustments as a hedge for this risk.
---
中文摘要:
基于粗糙波动率的最新进展,本文研究了粗糙度对时间不一致目标均衡反馈策略的影响。在包含非马尔可夫和非半鞅模型的一般框架下,我们发展了一个扩展的路径相关Hamilton-Jacobi-Bellman(PHJB)方程组。给出了一个验证定理。通过推导三个问题的显式解,包括具有常数风险厌恶的均值-方差投资组合问题(MVP)、对数收益的MVP和具有非指数贴现的投资/消费问题,我们提出波动粗糙度可以显著调整均衡策略,在某些情况下高达40%。由于粗糙波动率模型通过拟合波动率偏斜来捕捉短期下行风险,我们将调整解释为对该风险的对冲。
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--
一级分类:Mathematics 数学
二级分类:Optimization and Control 优化与控制
分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory
运筹学,线性规划,控制论,系统论,最优控制,博弈论
--
---
PDF下载:
-->