全部版块 我的主页
论坛 计量经济学与统计论坛 五区 计量经济学与统计软件
7395 3
2007-05-04
<P>最近做毕业论文,用到了面板数据的分析。平时读书太少,临时抱佛脚;在坛子里面看到了各位学友以前的讨论,但是还是不甚明晰,所以再弱弱的问一次,恳请高人作答。</P>
<P>1.本文的论文是探讨3年30个省市自治区,多种因素(5种以上)对经济发展的影响。在高铁梅的书里看到了根据数据的“长宽”结构决定用Pool还是Panel。在这里我是否是该用panel?</P>
<P>2.看到前面的讨论中,说两者的计量分析结果是一致的,我做了对比。</P>
<P>   <FONT color=#ff0000>在分析选项为none——none——no weight时,结果差异不大</FONT>。(<FONT color=#ff0000>前为panel,后为pool</FONT>)</P>
<P><STRONG> Dependent Variable: INCOME</STRONG>    <BR>Method: Panel Least Squares    <BR>Date: 05/04/07   Time: 15:54    <BR>Sample: 2003 2005    <BR>Cross-sections included: 30    <BR>Total panel (balanced) observations: 90    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 124.7870 6.325950 19.72621 0.0000<BR>E2 9.266186 6.812881 1.360098 0.1774<BR>E3 -23.34554 10.84067 -2.153515 0.0341<BR>E4 18.44371 4.128810 4.467077 0.0000<BR>    <BR>R-squared 0.813462     Mean dependent var  2949.047<BR>Adjusted R-squared 0.806955     S.D. dependent var  1424.912<BR>S.E. of regression 626.0624     Akaike info criterion  15.76020<BR>Sum squared resid 33708052     Schwarz criterion  15.87131<BR>Log likelihood -705.2092     F-statistic  125.0106<BR>Durbin-Watson stat 0.486574     Prob(F-statistic)  0.000000<BR>    <BR></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Pooled Least Squares    <BR>Date: 05/04/07   Time: 15:54    <BR>Sample: 2003 2005    <BR>Included observations: 90    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 2700    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 124.7870 1.129835 110.4471 0.0000<BR>E2 9.266186 1.216802 7.615193 0.0000<BR>E3 -23.34554 1.936178 -12.05754 0.0000<BR>E4 18.44371 0.737419 25.01118 0.0000<BR>    <BR>R-squared 0.813462     Mean dependent var  2949.047<BR>Adjusted R-squared 0.813254     S.D. dependent var  1417.236<BR>S.E. of regression 612.4456     Akaike info criterion  15.67428<BR>Sum squared resid 1.01E+09     Schwarz criterion  15.68302<BR>Log likelihood -21156.27     F-statistic  3918.937<BR>Durbin-Watson stat 1.398221     Prob(F-statistic)  0.000000<BR>    <BR>   <FONT color=#ff0000>分析选项改动后,差异就相当大。fixed——none——no weight</FONT></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Panel Least Squares    <BR>Date: 05/04/07   Time: 16:01    <BR>Sample: 2003 2005    <BR>Cross-sections included: 30    <BR>Total panel (balanced) observations: 90    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>C 2797.634 271.3935 10.30841 0.0000<BR>E1 14.97280 11.20799 1.335904 0.1870<BR>E2 0.351364 2.790877 0.125897 0.9003<BR>E3 -30.70877 4.438541 -6.918662 0.0000<BR>E4 6.485118 2.345146 2.765337 0.0077<BR>    <BR> Effects Specification   <BR>    <BR>Cross-section fixed (dummy variables)    <BR>    <BR>R-squared 0.987260     Mean dependent var  2949.047<BR>Adjusted R-squared 0.979753     S.D. dependent var  1424.912<BR>S.E. of regression 202.7546     Akaike info criterion  13.74297<BR>Sum squared resid 2302129.     Schwarz criterion  14.68734<BR>Log likelihood -584.4336     F-statistic  131.5050<BR>Durbin-Watson stat 2.308158     Prob(F-statistic)  0.000000<BR>    <BR>  </P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Pooled Least Squares    <BR>Date: 05/04/07   Time: 16:01    <BR>Sample: 2003 2005    <BR>Included observations: 90    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 2700    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>C 50.59930 29.89669 1.692471 0.0907<BR>E1 123.2763 1.444399 85.34780 0.0000<BR>E2 8.923536 1.239617 7.198623 0.0000<BR>E3 -23.19858 1.947932 -11.90934 0.0000<BR>E4 18.06670 0.773909 23.34472 0.0000<BR>Fixed Effects (Cross)    (<FONT color=#ff0000>随带询问:为何我做出的以下结果都是一样的,而书上出来的都不一样</FONT>)<BR>_1--C 3.81E-12   _2--C 3.81E-12   _3--C 3.81E-12   _4--C 3.81E-12   <BR>_5--C 3.81E-12   _6--C 3.81E-12   _7--C 3.81E-12   _8--C 3.81E-12   <BR>_9--C 3.81E-12   _10--C 3.81E-12   _11--C 3.81E-12   _12--C 3.81E-12   <BR>_13--C 3.81E-12   _14--C 3.81E-12   _15--C 3.81E-12   _16--C 3.81E-12   <BR>_17--C 3.81E-12   _18--C 3.81E-12   _19--C 3.81E-12   _20--C 3.81E-12   <BR>_21--C 3.81E-12   _22--C 3.81E-12   _23--C 3.81E-12   _24--C 3.81E-12   <BR>_25--C 3.81E-12   _26--C 3.81E-12   _27--C 3.81E-12   _28--C 3.81E-12   <BR>_29--C 3.81E-12   _30--C 3.81E-12   </P>
<P>    <BR> Effects Specification   <BR>    <BR>Cross-section fixed (dummy variables)    <BR>    <BR>R-squared 0.813662     Mean dependent var  2949.047<BR>Adjusted R-squared 0.811356     S.D. dependent var  1417.236<BR>S.E. of regression 615.5512     Akaike info criterion  15.69543<BR>Sum squared resid 1.01E+09     Schwarz criterion  15.76973<BR>Log likelihood -21154.83     F-statistic  352.7679<BR>Durbin-Watson stat 1.397094     Prob(F-statistic)  0.000000<BR>    <BR></P>
<P>  <FONT color=#ff0000>分析条件:fixed——none——cross section weights,差异很大</FONT></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Panel EGLS (Cross-section weights)    <BR>Date: 05/04/07   Time: 16:06    <BR>Sample: 2003 2005    <BR>Cross-sections included: 30    <BR>Total panel (balanced) observations: 90    <BR>Linear estimation after one-step weighting matrix    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>C 3402.656 131.6626 25.84375 0.0000<BR>E1 -10.84125 5.874811 -1.845378 0.0703<BR>E2 -2.793492 1.923607 -1.452216 0.1520<BR>E3 -18.58849 2.702947 -6.877121 0.0000<BR>E4 -0.418080 1.412075 -0.296075 0.7683<BR>    <BR> Effects Specification   <BR>    <BR>Cross-section fixed (dummy variables)    <BR>    <BR> Weighted Statistics   <BR>    <BR>R-squared 0.998406     Mean dependent var  5028.896<BR>Adjusted R-squared 0.997467     S.D. dependent var  3294.579<BR>S.E. of regression 165.8197     Sum squared resid  1539786.<BR>F-statistic 1062.945     Durbin-Watson stat  2.262978<BR>Prob(F-statistic) 0.000000   <BR>    <BR> Unweighted Statistics   <BR>    <BR>R-squared 0.984702     Mean dependent var  2949.047<BR>Sum squared resid 2764482.     Durbin-Watson stat  1.984506<BR>    <BR></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Pooled EGLS (Cross-section weights)    <BR>Date: 05/04/07   Time: 16:06    <BR>Sample: 2003 2005    <BR>Included observations: 90    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 2700    <BR>Linear estimation after one-step weighting matrix    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>C 50.59930 29.89669 1.692471 0.0907<BR>E1 123.2763 1.444399 85.34780 0.0000<BR>E2 8.923536 1.239617 7.198623 0.0000<BR>E3 -23.19858 1.947932 -11.90934 0.0000<BR>E4 18.06670 0.773909 23.34472 0.0000<BR>Fixed Effects (Cross)    <BR>_1--C 1.96E-12   _2--C 1.96E-12   _3--C 1.96E-12   _4--C 1.96E-12   <BR>_5--C 1.96E-12   _6--C 1.96E-12   _7--C 1.96E-12   _8--C 1.96E-12   <BR>_9--C 1.96E-12   _10--C 1.96E-12   _11--C 1.96E-12   _12--C 1.96E-12   _13--C 1.96E-12   <BR>_14--C 1.96E-12   15--C 1.96E-12   _16--C 1.96E-12   _17--C 1.96E-12   <BR>_18--C 1.96E-12   _19--C 1.96E-12   20--C 1.96E-12   _21--C 1.96E-12   <BR>_22--C 1.96E-12   _23--C 1.96E-12   _24--C 1.96E-12   _25--C 1.96E-12   <BR>_26--C 1.96E-12   _27--C 1.96E-12   _28--C 1.96E-12   _29--C 1.96E-12   _30--C 1.96E-12   <BR>    <BR> Effects Specification   <BR>    <BR>Cross-section fixed (dummy variables)    <BR>    <BR> Weighted Statistics   <BR>    <BR>R-squared 0.813662     Mean dependent var  2949.047<BR>Adjusted R-squared 0.811356     S.D. dependent var  1417.236<BR>S.E. of regression 615.5512     Sum squared resid  1.01E+09<BR>F-statistic 352.7679     Durbin-Watson stat  1.397094<BR>Prob(F-statistic) 0.000000   <BR>    <BR> Unweighted Statistics   <BR>    <BR>R-squared 0.813662     Mean dependent var  2949.047<BR>Sum squared resid 1.01E+09     Durbin-Watson stat  1.397094<BR>    <BR></P>

<P>3. 在部分分析中,我希望进行某一年的横截面数据分析。不知道我的做法正确与否。我分别在panel和pool中分别通过改变时间区域的办法进行了横截面分析。结果也差异很大。</P>
<P><FONT color=#ff0000>分析条件:none——none——no weights,除特征值外差异不大。(前为panel,后为pool)</FONT></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Panel Least Squares    <BR>Date: 05/04/07   Time: 16:13    <BR>Sample: 2003 2003    <BR>Cross-sections included: 30    <BR>Total panel (balanced) observations: 30    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 48.15397 18.23247 2.641110 0.0138<BR>E2 -2.293155 21.92957 -0.104569 0.9175<BR>E3 102.3355 28.70613 3.564937 0.0014<BR>E4 77.26180 31.29374 2.468922 0.0204<BR>    <BR>R-squared 0.847892     Mean dependent var  2742.348<BR>Adjusted R-squared 0.830341     S.D. dependent var  1272.425<BR>S.E. of regression 524.1083     Akaike info criterion  15.48484<BR>Sum squared resid 7141927.     Schwarz criterion  15.67167<BR>Log likelihood -228.2726     F-statistic  48.31023<BR><FONT color=#ff0000>Durbin-Watson stat 0.000000</FONT>     Prob(F-statistic)  0.000000 (<FONT color=#ff0000>随带问一声,横截面数据是否不用考虑DW检验</FONT>)<BR>    <BR><BR><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Pooled Least Squares    <BR>Date: 05/04/07   Time: 16:13    <BR>Sample: 2003 2003    <BR>Included observations: 30    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 900    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 48.15397 3.105834 15.50436 0.0000<BR>E2 -2.293155 3.735622 -0.613862 0.5395<BR>E3 102.3355 4.889982 20.92759 0.0000<BR>E4 77.26180 5.330773 14.49355 0.0000<BR>    <BR>R-squared 0.847892     Mean dependent var  2742.348<BR>Adjusted R-squared 0.847382     S.D. dependent var  1251.733<BR>S.E. of regression 489.0061     Akaike info criterion  15.22706<BR>Sum squared resid 2.14E+08     Schwarz criterion  15.24841<BR>Log likelihood -6848.178     F-statistic  1664.845<BR>Durbin-Watson stat 0.000000     Prob(F-statistic)  0.000000<BR>    <BR></P>
<P><FONT color=#ff0000>分析条件:fixed——none——no weights时,panel分析提示“near singular matrix”,pool则可顺利做出</FONT></P>
<P>以下是pool结果:</P>
<P><STRONG>Dependent Variable: INCOME    <BR></STRONG>Method: Pooled Least Squares    <BR>Date: 05/04/07   Time: 16:17    <BR>Sample: 2003 2003    <BR>Included observations: 30    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 900    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>C -1094.718 49.69840 -22.02724 0.0000<BR>E1 45.93406 2.531145 18.14754 0.0000<BR>E2 38.15520 3.553257 10.73809 0.0000<BR>E3 127.5180 4.142868 30.78013 0.0000<BR>E4 93.39735 4.402320 21.21549 0.0000<BR>Fixed Effects (Cross)    <BR>_1--C -5.70E-12   _2--C -5.70E-12   _3--C -5.70E-12   _4--C -5.70E-12   <BR>_5--C -5.70E-12   _6--C -5.70E-12   _7--C -5.70E-12   _8--C -5.70E-12   <BR>_9--C -5.70E-12   _10--C -5.70E-12 _11--C -5.70E-12 _12--C -5.70E-12   <BR>_13--C -5.70E-12 _14--C -5.70E-12 _15--C -5.70E-12 _16--C -5.70E-12   <BR>_17--C -5.70E-12 _18--C -5.70E-12 _19--C -5.70E-12 _20--C -5.70E-12   <BR>_21--C -5.70E-12 _22--C -5.70E-12 _23--C -5.70E-12  _24--C -5.70E-12   <BR>_25--C -5.70E-12 _26--C -5.70E-12  _27--C -5.70E-12 _28--C -5.70E-12   <BR>_29--C -5.70E-12 _30--C -5.70E-12   <BR>    <BR> Effects Specification   <BR>    <BR>Cross-section fixed (dummy variables)    <BR>    <BR>R-squared 0.902512     Mean dependent var  2742.348<BR>Adjusted R-squared 0.898797     S.D. dependent var  1251.733<BR>S.E. of regression 398.2068     Akaike info criterion  14.84887<BR>Sum squared resid 1.37E+08     Schwarz criterion  15.03029<BR>Log likelihood -6647.990     F-statistic  242.9433<BR>Durbin-Watson stat 0.000000     Prob(F-statistic)  0.000000<BR>    <BR></P>
<P><FONT color=#ff0000>分析条件:none——none——cross section weights,  差异很大</FONT></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Panel EGLS (Cross-section weights)    <BR>Date: 05/04/07   Time: 16:20    <BR>Sample: 2003 2003    <BR>Cross-sections included: 30    <BR>Total panel (balanced) observations: 30    <BR>Linear estimation after one-step weighting matrix    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 43.11071 5.190409 8.305841 0.0000<BR>E2 -7.385865 3.803325 -1.941950 0.0631<BR>E3 110.2336 6.742339 16.34945 0.0000<BR>E4 98.89031 14.35453 6.889137 0.0000<BR>    <BR> Weighted Statistics   <BR>    <BR>R-squared 0.997489     Mean dependent var  7643.457<BR>Adjusted R-squared 0.997199     S.D. dependent var  9186.062<BR>S.E. of regression 486.1690     Sum squared resid  6145367.<BR>F-statistic 3442.461     Durbin-Watson stat  0.000000<BR>Prob(F-statistic) 0.000000   <BR>    <BR> Unweighted Statistics   <BR>    <BR>R-squared 0.845013     Mean dependent var  2742.348<BR>Sum squared resid 7277102.     Durbin-Watson stat  0.000000<BR>    <BR></P>
<P><STRONG>Dependent Variable: INCOME</STRONG>    <BR>Method: Pooled EGLS (Cross-section weights)    <BR>Date: 05/04/07   Time: 16:20    <BR>Sample: 2003 2003    <BR>Included observations: 30    <BR>Cross-sections included: 30    <BR>Total pool (balanced) observations: 900    <BR>Linear estimation after one-step weighting matrix    <BR>    <BR>Variable Coefficient Std. Error t-Statistic Prob.  <BR>    <BR>E1 48.15397 3.105834 15.50436 0.0000<BR>E2 -2.293155 3.735622 -0.613862 0.5395<BR>E3 102.3355 4.889982 20.92759 0.0000<BR>E4 77.26180 5.330773 14.49355 0.0000<BR>    <BR> Weighted Statistics   <BR>    <BR>R-squared 0.847892     Mean dependent var  2742.348<BR>Adjusted R-squared 0.847382     S.D. dependent var  1251.733<BR>S.E. of regression 489.0061     Sum squared resid  2.14E+08<BR>F-statistic 1664.845     Durbin-Watson stat  0.000000<BR>Prob(F-statistic) 0.000000   <BR>    <BR> Unweighted Statistics   <BR>    <BR>R-squared 0.847892     Mean dependent var  2742.348<BR>Sum squared resid 2.14E+08     Durbin-Watson stat  0.000000<BR>    <BR></P>

<P>各位达人:</P>
<P>以上就是我论文写作的部分问题,恳请各位达人给于帮助,老板的刀已经架上脖子了……</P>
<P>1. panel和Pool的差异何在,本文的数据结构应该用哪一种?(3年30个省,多种因素(5种以上)对经济发展的影响)</P>
<P>2. 为何在添加分析条件和两者结果差距很大,不添加条件显然通不过检验。</P>
<P>3. 做横截面分析,该用哪一种,或者说两种方法都不对,该用什么方法</P>
<P>4. 随带提出的两个问题(在上文中已注明)</P>
<P>   Fixed Effects (Cross)    (<FONT color=#ff0000>随带询问:为何我做出的以下结果都是一样的,而书上出来的都不一样</FONT>)<BR>  <FONT color=#ff0000>Durbin-Watson stat 0.000000</FONT>   (<FONT color=#ff0000>随带问一声,横截面数据是否不用考虑DW检验</FONT>)<BR></P>
<P>本人平时荒废了学业了,以上问题可能对各位达人来说都不是问题,求助求助……</P>
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2010-4-23 00:43:04
晕。。。。。。。。。。。。ING
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2010-6-3 00:17:24
额。。。。
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-4-11 23:15:18
我的计量也是新手,但是刚好学到的知识可以回答你顺带问的问题哈:
截面数据也的残差也会涉及到自相关的问题,如果DW=0说明楼主的数据残差间存在明显的正相关。
截面数据的自相关问题比时间序列更为复杂,因为可能涉及到类似跨地区因素等模型中未解释到的变量
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群