他的开创性研究可分三个时期.
第一个时期开始于1921年秋.大学二年级的他开始研究三角级数与集合上的算子等一系列复杂问题.1926年他构造了处处发散的一个傅里叶级数,直到1966年瑞典数学家L.卡勒逊(Carle-son)及1967年美国数学家R.亨特(Hunt)又证明了对p>1,Lp函数的傅里叶级数处处收敛到这个函数,这就彻底解决了三角级数的发散问题(鲁金问题).他于1922年定义的在集合上的δS运算是描述集合论中的基本运算.他对三角级数和正交级数的兴趣贯彻终生,不时地返回到这个领域,并安排年轻人继续进行研究,在这方面他发表的10篇文章中的每一篇都是延续至今的研究的起点.在这时期他在微分、积分、可测集等方面都做了重要的工作.此后他又转向数理逻辑与数学基础.20世纪以来,数学家对逻辑律的适用性、数学本质及集合论悖论发生了无休止的争论,产生了直观主义者,他们否认排中律在超限归纳中的有效性.柯尔莫哥洛夫在1925年证明:超限地使用排中律所得到的有限结论都是对的,而且都可以不用排中律来证明.他还构造了他的直观演算系统,从而创造了直观逻辑的另一种解释.1925年他证明了希尔伯特变换的一个车贝雪夫型不等式,这是M.里斯(Riesz)、A.济格蒙德(Zygmund)、G.H.哈代(Hardy)等著名数学家关于奇异算子弱型概念研究的起点.作为柯尔莫哥洛夫开创性成果的核心部分之一是概率论与随机过程.这一研究起始于他大学的第四年(1924年),他与辛钦一起研究独立随机变量组成的级数的收敛性,得到了以后被称为柯尔莫哥洛夫三级数定理的成果,其中他首次使用了以后用他命名的不等式以及相应的下限估计,开创了概率论研究中的新方法.1928年他得到了独立随机变量列遵从大数律的必要且充分的条件.1930年他又得到了独立随机变量列遵从强大数律的一个非常一般的充分条件.这些结果至今是概率论教科书中的标准内容.1929年他又得到了独立同分布随机变量列的重对数律.他的结果和创用的方法是许多作者用来作为研究的泉源,其中如J.马辛凯维茨(Marcinkiewicz)和济格蒙德1937年证明了柯尔莫哥洛夫的结果中的一个小O条件不能改为大O;1941年P.哈特曼(Hartman)与维纳改进了柯尔莫哥洛夫的条件;1965年V.斯特拉森(Strassen)将其推广为泛函类型的重对数律.20世纪初,G.波尔曼(Bohlmann)曾企图给概率论建立一个公理系统.为此,波莱尔A.隆尼斯基(Lomnicki)、维纳相继在概率论中运用测度论,伯恩斯坦、R.冯·米赛斯(vonMises)也都企图建造概率论的公理化基础,但是都不很成功.柯尔莫哥洛夫在他1929年发表的文章“概率论与测度论的一般理论”(General measure theory and calculus of probabilities),首次给出了测度论基础的概率论公理结构.5年以后该文编写成单行本,即如今在数学界众所周知的经典著作《概率计算的基本概念》(Grundbegriffe der Wahrscheinlichkeitsrechnung).概率论的公理化是他的巨大贡献,它使概率论从自然哲学领域真正转到数学的范围,使概率论被确认为数学的一个分支,并且日渐与其他数学分支相互渗透.著名日本数学家伊籐写道“读了柯尔莫哥洛夫的小册子《概率论基本概念》,我信服地认为概率论可以用测度论来发展,并且它也与其他数学分支一样地严格”.柯尔莫哥洛夫在这单行本的序言中还列出了无穷维空间的概率分布、条件期望,指出这些都源自物理问题.事实上它们也是随机过程论的必要基础.在50多年以后的今天,它的意义就更明显了,它是概率论划时代的著作,柯尔莫哥洛夫在1930夏完成的小册子《概率论中的解析方法》(ber,die analytischen Methoden in Wahrscheinlichkeitrechnung)开创了无后效随机过程(以后辛钦建议改名为马尔科夫过程)的一般理论的研究,把物理学家M.普朗克(Plank)、爱因斯坦、A.福克(Fokker)等在特殊情形得到的关于转移函数的一个积分方程一般化[以后称为恰普曼(Chapman)-柯尔莫哥洛夫方程],并且由此导出了时间向前与向后的两个偏微分方程(称为柯尔莫哥洛夫方程).在马尔科夫过程的发展中,他把傅里叶的传热理论、爱因斯坦与斯摩罗霍夫斯基的布朗运动理论、马尔科夫等人关于可几随机徘徊的描述与首次构造随机过程例子的巴舍利艾与维纳的思想结合在一起,抽象出了马尔科夫过程的一般模型.这个工作标志着概率论发展及其在物理、化学、生物、工程等方面的应用的新时期.在这个时期,他的另一文章“拉普拉斯-李雅普诺夫定理的推广”(An extention of Laplace-Lypunov theorem,1931),给出了获得独立随机变量和的上、下界概率的渐近展开的基本方法.
柯尔莫哥洛夫开创工作的第二阶段始于1931年他被任为教授之后.这时期持续了1/4个世纪,在此期间他的研究兴趣极其广泛.1932年他发表了两篇关于几何的文章“射影几何证法”(Кобоснованиюпроективной геометри)和“拓扑几何”(Топологической геометрии),用拓扑、群的观点研究几何.在他建议下,Л.庞特里亚金(Понтрягин)证明了具有可数基的连通局部紧拓扑域一定是实数域、复数域或四元数广域之一.在代数拓扑领域中上同调群是一个核心的概念.1936年柯尔莫哥洛夫与美国数学家J.W.亚历山大(Alexander)相互独立地构造了上同调群,并在其上定义了乘积运算,使之成为环,这在以后的研究(特别是连续映射)中极为重要.他在拓扑上的第二个贡献是给出了局部紧空间闭集的对偶律.1937年,他给出了一个从一维紧集到二维紧集的开映射,引起了苏联拓扑学家对开映射的兴趣.
这时期,概率论仍旧是他的主要专业之一,他非常重视随机过程的应用.1932年他积极参与了著名生物学家Д.Д.罗玛晓夫(Ромащов)领导的生物微演化的实验室.由于马尔科夫过程是动力系统在随机情形的对等物,两者互相渗透会产生很多新的概念和现象,所以马氏过程始终是许多研究的重点.1935年他又提出了可逆(对称)马氏过程的新模型,并给出了刻画其特征的充要条件.40多年后的今天,可逆马氏过程已成为统计物理、排队网络、模拟退火、人工神经网络、蛋白质结构等领域中十分常见的重要模型.在20年代末30年代初 B.德·菲乃蒂(de Finetti)提出了“无穷可分律”,指出了具有特征函数和同分布,柯尔莫哥洛夫在1932年对具有二阶矩的随机变量给出了它具有无穷可分律的充要条件.以后,勒维证明了有限方差这个限制可以取消,随后辛钦又证明了这一结果仍可用柯尔莫哥洛夫的方法得到(最终的表达式称为无穷可分律的勒维-辛钦典则形式).
柯尔莫哥洛夫还解决了一系列生物学问题,由此得到了十分有意义的纯数学的成果.他与И,Г彼得洛夫斯基(Петровский)及H.C.比斯库诺夫(Пискунов)合作的有关生物学的文章(1937),首次构造了非线性扩散的行波型稳定解.他在其中的贡献是从物理方面定性地描述现象的图象,并把它表示为公式.生物学问题导致他提出了分枝过程的模型,并研究了它的灭绝概率(1947年).1939年,他由分析统计资料验证了基因遗传的“孟德尔(Mendle)律”(当时基因与孟德尔律在苏联生物学界被批判为“唯心主义”、“反科学”的).
1937年,他给出了在金属随机结晶过程中一个给定的点属于结晶团的概率与平均结晶的数目,这一结果在金属结晶化理论中至今仍是基本的结论.
1933年,他与M.A.列沃托维奇(Леотович)给出了A.K.伏拉索夫(Власов)提出的二维布朗质点为中心、半径为ρ的圆盘在t时刻前扫过的平均面积的渐近估计.
1936—1937年,他给出了可数状态马尔科夫链的状态分类.
在数理统计方面,1933年他定义了度量经验分布与理论分布最大偏差的(以后以他命名的)统计量,并推导了它的分布函数.这是分布拟合理论中拟合度的基本检验,已成为数理统计教科书的基本内容.
1935年他首次给出了巴拿赫空间上概率测度的特征泛函这一概念,并指出它在发展非线性量子理论中的重要性.
他在平稳随机过程方面的成就与维纳的成就并列为该领域最基本的成果.具连续谱的元阻尼随机运动是平稳过程的丰富源泉,平稳过程是概率特征不随时间变化的随机过程,常出现在无线电工程、自动控制等应用领域,是大量随机自然现象(大气、海洋等)的理想化.其中的一个重要问题是用过去的资料预测将来.他早于维纳(1941)得到了预测与内插的公式.维纳指出柯尔莫哥洛夫的研究是与控制学有关的信息统计理论相联系的.在柯尔莫哥洛夫的研究中应用了希尔伯特空间的几何理论.
平稳过程与平稳增量过程的研究使他得到了局部迷向湍流的近似表达式.流体有确定性的规律,但是其运动特征又极端复杂,可以把它看成随机过程.20世纪著名的工程师G.L.泰勒(Tay-lor)与T.冯·卡门(von Krmn)引进了迷向湍流,然而其结论与实验不符,柯尔莫哥洛夫用局部迷向湍流得到了著名的“柯尔莫哥洛夫2/3次律”:在特定条件下,湍流中距离为r的两点的速度差的平方平均与r2/3成正比.这个2/3律至今还被大气物理界公认为几乎是关于湍流的所有结果中最与实际相近的.1962年他又作了更为精确的修正.
他在概率论、随机过程与数理统计方面的贡献,说明他是随机数学领域的领导人.他不仅是一个多方面的数学家,而且是一个有惊人洞察力的应用数学家.
1949年格涅坚科与他一起发表的《独立随机变量和的极限分布》(Пределъные теолемы для сумм неэависимых случайныхвеличин)一书,总结了莫斯科学派当时在弱极限理论方面的世界领先的成果,成为弱极限理论的经典著作.
在逼近论方面,1935—1936年他研究了光滑性与逼近度的关系,引进了一种逼近的度量(以后称为柯尔莫哥洛夫直径),开创了逼近论领域中的新方向.60年代以后柯尔莫哥洛夫直径受到了更大的重视.
在泛函分析方面,他在1931年得到了Lp空间中集合为紧的判别法.在1934年定义了线性拓扑空间与其中的有界集和凸集,得到了可正规化的经典判别法(存在0点的一个有界凸邻域).1938年柯尔莫哥洛夫与И.M.盖尔范德(Гелъфанд)合作的文章是后者以后开创赋范环理论的源泉.他们证明了两个满足第一可数公理的拓扑空间的同胚性与在它们上的连续函数环间的代数同构性等价.
他的第三个开创性研究时期开始于50年代中期.这时,他的研究方向转向经典力学哈密顿系统、信息论、动力系统的遍历论、信息论与函数论的关系(ε熵)、希尔伯特第13问题和函数的迭合、有限自动机与复杂性理论等领域.
50年代中期他与B.A.乌斯宾斯基(Успенский)对算法与自动机理论的基本对象给出了广泛的定义.
在这时期他在动力系统方面的工作可分为两个系列.第一个系列是经典力学方面的.太阳系能否永恒发展而不会引起灾变?简单行星系是否只有三体系统才能稳定地运动?这个问题归结于研究近似可积系统的运动体系.庞加莱称它为哈密顿系统在微扰下的发展问题.它是动力学基本问题,可溯源到Ⅰ.牛顿(Newton)、P.S.拉普拉斯(Laplace)的研究.柯尔莫哥洛夫在50年代中期对具大量初始条件的情形解决了这个问题,开创了哈密顿系的微扰理论.从他的定理可推出:围绕木星作圆轨道转动的卫星,在经受沿椭圆轨道的木星运动的干扰下,并不能影响木星的椭圆轨道.他的理论还可用到大量力学、物理学问题中,解决了不对称刚体统定点高速旋转的稳定性、托卡马克(Токамак)型系统中磁面的稳定性等问题.