全部版块 我的主页
论坛 经济学论坛 三区 博弈论
1327 4
2012-12-04


Prove the following lemma: Let G be a finite strategic game, and let G` be a strategic game obtained by eliminating a weakly dominated action in G. If a* is a NE(nash equilibrium) of G`, then it is also a NE(nash equilibrium) of G.

没有证明思路
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

全部回复
2012-12-4 12:07:32
Let Ai be the set of pure strategies of player i in game G. Ai` be the set of pure strategies of game G`. Note that Ai \Ai`=/=empty for some i since some weakly dominated strategies are eliminated from G to G`.

Now a* is a NE in G`, by definition , for all i and ai in Ai`, ui(ai*, a-i*)>= ui (ai, a-i*). For any si in Ai \ Ai`, since si is weakly dominated, there exists some bi in Ai` such that ui(bi, a-i*)>=ui(si,a-i*). But then ui(ai*, a-i*)>=ui(si,a-i*). Thus ai* is still a best response to a-i* in the original game G. This argument is true for all other players, so a* is a NE in G
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-4 14:05:17
没看懂啊
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-4 19:26:01
vesperw 发表于 2012-12-4 12:07
Let Ai be the set of pure strategies of player i in game G. Ai` be the set of pure strategies of gam ...
多谢!
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

2012-12-4 19:27:44
L03我爱罗-_ 发表于 2012-12-4 14:05
没看懂啊
是题目还是2楼的证明?
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群