<P>下面是我的协整试验结果,我研究的是人民币和其他货币之间的关系,这里有个问题,其它的货币系数感觉都是正确的,为什么韩元kr的系数会如此之大呢,标准化之后达到了510多,这可能是由什么原因造成的呢??谢谢</P>
<P>Date: 08/23/07 Time: 12:38 <BR>Sample: 1994:01 2007:01 <BR>Included observations: 154 <BR>Test assumption: Linear deterministic trend in the data <BR>Series: RMB SIG TL TW UK USA ML KR JP HK EUR AUS <BR>Warning: Critical values were derived for a maximum of 10 endogenous series <BR>Lags interval: 1 to 2 <BR> <BR> Likelihood 5 Percent 1 Percent Hypothesized <BR>Eigenvalue Ratio Critical Value Critical Value No. of CE(s) <BR> <BR> 0.428931 421.1680 233.13?? 247.18?? None ** <BR> 0.357659 334.8903 233.13?? 247.18?? At most 1 ** <BR> 0.331253 266.7243 233.13 247.18 At most 2 ** <BR> 0.247230 204.7625 192.89 204.95 At most 3 * <BR> 0.232990 161.0271 156.00 168.36 At most 4 * <BR> 0.204676 120.1778 124.24 133.57 At most 5 <BR> 0.159967 84.91084 94.15 103.18 At most 6 <BR> 0.111708 58.06639 68.52 76.07 At most 7 <BR> 0.098061 39.82441 47.21 54.46 At most 8 <BR> 0.067493 23.93024 29.68 35.65 At most 9 <BR> 0.057113 13.16885 15.41 20.04 At most 10 <BR> 0.026350 4.112292 3.76 6.65 At most 11 * <BR> <BR> *(**) denotes rejection of the hypothesis at 5%(1%) significance level <BR> ?? denotes critical values derived assuming 10 endogenous series <BR> L.R. test indicates 5 cointegrating equation(s) at 5% significance level <BR> <BR> <BR> RMB SIG TL TW UK USA ML KR JP HK EUR AUS <BR> 0.678643 -0.679442 -2.447599 -9.873864 0.133405 0.860768 0.011394 346.3852 0.065677 -0.200997 -0.170397 0.091697 <BR> 1.624860 0.163611 14.82635 -6.695019 -0.049027 -0.275187 -0.685305 -68.26445 4.757041 3.264300 0.212483 -0.251135 <BR>-5.579193 0.110214 -2.906721 10.06385 -0.081077 4.060380 0.000275 -268.9400 -19.08846 -41.27109 -0.171900 0.292258 <BR> 2.176434 -0.225451 -0.284292 12.28935 0.047215 -5.417984 0.360699 40.47377 2.935063 40.10929 0.237097 -0.386614 <BR> 0.579784 0.026800 2.856811 9.667608 -0.002829 5.981291 -0.903977 38.20215 -14.21607 -44.89464 -0.112374 0.249832 <BR> 0.585674 1.126458 -1.431161 -4.684366 -0.180112 0.900815 -0.656401 114.7405 -7.224251 2.554477 0.178333 -0.133657 <BR>-0.630724 0.659172 1.551028 -1.664533 0.120204 0.968404 -0.493020 16.98803 -1.742970 -6.364713 8.49E-05 -0.328360 <BR> 0.684770 0.223725 4.565287 -2.443173 -0.140014 -3.581368 -0.666555 -11.47280 11.98885 28.76040 0.086397 -0.039955 <BR> 0.494850 0.417995 1.316558 -3.072364 -0.083630 2.286276 -0.238665 -13.07577 12.60831 -18.41934 0.028428 0.049427 <BR>-0.094158 -0.473291 0.404640 4.801122 -0.011593 -0.039260 0.400954 -79.11586 4.893320 -3.747201 0.038571 -0.030898 <BR> 0.080537 0.132757 1.819887 1.820036 -0.097735 -0.421411 -0.439760 -19.68385 0.109489 0.721074 0.057049 0.132480 <BR> 1.197924 -0.239754 -1.781076 0.712853 0.050622 -0.431963 0.229351 23.41113 8.645313 9.214141 0.026883 0.051946 <BR> <BR> <BR> Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s) <BR> <BR>RMB SIG TL TW UK USA ML KR JP HK EUR AUS C<BR> 1.000000 -1.001176 -3.606606 -14.54942 0.196576 1.268365 0.016789 510.4083 0.096777 -0.296175 -0.251085 0.135118 -6.813219<BR> (0.90110) (4.56668) (12.3758) (0.17481) (2.18222) (0.23944) (419.341) (4.39470) (11.3370) (0.26736) (0.19172) <BR> <BR> Log likelihood 5880.658 <BR></P>