july0710 发表于 2013-4-6 19:01 
garch的参数
data(dji30ret)
spec = gogarchspec(mean.model = list(model = c("constant", "AR", "VAR")[2], 
     lag =1), variance.model = list(model = "gjrGARCH", garchOrder = c(1, 1), 
     submodel = NULL, variance.targeting = FALSE), distribution.model = c("mvnorm", 
     "manig", "magh")[2], ica = c("fastica", "radical")[1])
fit = gogarchfit(spec, data = dji30ret[,1:4, drop = FALSE], out.sample = 0,  gfun = "tanh", rseed = 7)
fit@mfit$ufit@fit
[[1]]
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model     : gjrGARCH(1,1)
Mean Model      : ARFIMA(0,0,0)
Distribution    : nig 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.006230    0.002275   2.7389 0.006165
alpha1  0.053348    0.009749   5.4721 0.000000
beta1   0.952193    0.008148 116.8574 0.000000
gamma1 -0.023126    0.009476  -2.4405 0.014666
skew   -0.077369    0.027028  -2.8625 0.004203
shape   2.089454    0.240408   8.6913 0.000000
[[2]]
*---------------------------------*
*          GARCH Model Fit        *
*---------------------------------*
Conditional Variance Dynamics   
-----------------------------------
GARCH Model     : gjrGARCH(1,1)
Mean Model      : ARFIMA(0,0,0)
Distribution    : nig 
Optimal Parameters
------------------------------------
        Estimate  Std. Error  t value Pr(>|t|)
omega   0.003303    0.001172   2.8186 0.004823
alpha1  0.074723    0.011095   6.7350 0.000000
beta1   0.943551    0.008022 117.6137 0.000000
gamma1 -0.039514    0.010135  -3.8989 0.000097
skew   -0.101541    0.025540  -3.9757 0.000070
shape   2.083179    0.228506   9.1165 0.000000
...
...