请教了,做了有周期性的ARIMA模型,可是模型的特征根倒数有两个等于1,这个结果还可以用吗,结果如下,急复为盼!
| Dependent Variable: D(LOG(M+1),1,52) | |
| Method: Least Squares | | |
| Date: 01/18/15 Time: 08:22 | | |
| Sample (adjusted): 106 557 | | |
| Included observations: 452 after adjustments | |
| Convergence achieved after 10 iterations | |
| MA Backcast: 53 105 | | |
| | | | | |
| | | | | |
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| | | | | |
| | | | | |
| AR(52) | -0.129055 | 0.049995 | -2.581342 | 0.0102 |
| MA(1) | -0.509454 | 0.040802 | -12.48601 | 0.0000 |
| SMA(52) | -0.877329 | 0.016587 | -52.89374 | 0.0000 |
| | | | | |
| | | | | |
| R-squared | 0.582763 | Mean dependent var | -0.001706 |
| Adjusted R-squared | 0.580904 | S.D. dependent var | 0.872181 |
| S.E. of regression | 0.564630 | Akaike info criterion | 1.701321 |
| Sum squared resid | 143.1441 | Schwarz criterion | 1.728624 |
| Log likelihood | -381.4986 | Hannan-Quinn criter. | 1.712080 |
| Durbin-Watson stat | 2.062733 | | | |
| | | | | |
| | | | | |
| Inverted AR Roots | .96-.06i | .96+.06i | .95-.17i | .95+.17i |
| | .92-.29i | .92+.29i | .88-.39i | .88+.39i |
| | .82+.50i | .82-.50i | .76-.59i | .76+.59i |
| | .68-.68i | .68+.68i | .59+.76i | .59-.76i |
| | .50+.82i | .50-.82i | .39+.88i | .39-.88i |
| | .29+.92i | .29-.92i | .17-.95i | .17+.95i |
| | .06-.96i | .06+.96i | -.06+.96i | -.06-.96i |
| | -.17+.95i | -.17-.95i | -.29+.92i | -.29-.92i |
| | -.39+.88i | -.39-.88i | -.50+.82i | -.50-.82i |
| | -.59-.76i | -.59+.76i | -.68+.68i | -.68-.68i |
| | -.76-.59i | -.76+.59i | -.82-.50i | -.82+.50i |
| | -.88+.39i | -.88-.39i | -.92+.29i | -.92-.29i |
| | -.95-.17i | -.95+.17i | -.96-.06i | -.96+.06i |
| Inverted MA Roots | 1.00 | .99+.12i | .99-.12i | .97-.24i |
| | .97+.24i | .93-.35i | .93+.35i | .88-.46i |
| | .88+.46i | .82+.57i | .82-.57i | .75+.66i |
| | .75-.66i | .66+.75i | .66-.75i | .57+.82i |
| | .57-.82i | .51 | .46-.88i | .46+.88i |
| | .35-.93i | .35+.93i | .24-.97i | .24+.97i |
| | .12-.99i | .12+.99i | -.00-1.00i | -.00+1.00i |
| | -.12-.99i | -.12+.99i | -.24-.97i | -.24+.97i |
| | -.35-.93i | -.35+.93i | -.46+.88i | -.46-.88i |
| | -.57-.82i | -.57+.82i | -.66-.75i | -.66+.75i |
| | -.75+.66i | -.75-.66i | -.82+.57i | -.82-.57i |
| | -.88+.46i | -.88-.46i | -.93+.35i | -.93-.35i |
| | -.97+.24i | -.97-.24i | -.99-.12i | -.99+.12i |
| | -1.00 | | |