用了最简单的模型,R的输出结果如下,请问怎么改进啊?
> y1 <- Loan
> x1 <- Income
> x2 <- Gender
> x3 <- Customer (Existing customer vs New customer)
> x4 <- Age
> fit1 <- glm(y1~x1+x2+x3+x4)
> summary(fit1)
Call:
glm(formula = y1 ~ x1 + x2 + x3 + x4)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.93814 -0.47613 -0.02571 0.45665 2.87603
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.569570 0.182436 46.973 < 2e-16 ***
x1 0.065963 0.003539 18.641 < 2e-16 ***
x2M 0.109273 0.043666 2.503 0.012491 *
x3N 0.018938 0.067824 0.279 0.780131
x4 0.008240 0.002223 3.706 0.000222 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.4580338)
Null deviance: 635.32 on 999 degrees of freedom
Residual deviance: 455.74 on 995 degrees of freedom
AIC: 2064.1
Number of Fisher Scoring iterations: 2