. var liq lmp,lags(1 2 3 4 5 6 7)
Vector autoregression
Sample: 09jan1960 - 30dec1963 No. of obs = 1452
Log likelihood = -1660.272 AIC = 2.328198
FPE = .0351703 HQIC = 2.36891
Det(Sigma_ml) = .0337465 SBIC = 2.437304
Equation Parms RMSE R-sq chi2 P>chi2
----------------------------------------------------------------
liq 15 13.2708 0.1783 315.1642 0.0000
lmp 15 .014015 1.0000 3.02e+07 0.0000
----------------------------------------------------------------
------------------------------------------------------------------------------
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
liq |
liq |
L1. | .0308621 .0260551 1.18 0.236 -.0202049 .0819292
L2. | .1083704 .0260176 4.17 0.000 .0573769 .1593639
L3. | .1196932 .0261256 4.58 0.000 .0684879 .1708985
L4. | .0778144 .0261892 2.97 0.003 .0264846 .1291443
L5. | .075117 .0260609 2.88 0.004 .0240386 .1261955
L6. | .0505429 .0260016 1.94 0.052 -.0004192 .1015051
L7. | .1196011 .0260118 4.60 0.000 .0686188 .1705834
|
lmp |
L1. | 21.91159 21.04826 1.04 0.298 -19.34224 63.16542
L2. | -95.2814 34.38799 -2.77 0.006 -162.6806 -27.88218
L3. | 59.63789 30.77745 1.94 0.053 -.6848037 119.9606
L4. | 2.240087 21.58492 0.10 0.917 -40.06557 44.54575
L5. | 46.50187 20.47391 2.27 0.023 6.373754 86.63
L6. | -36.81189 19.87706 -1.85 0.064 -75.77021 2.146433
L7. | .8672002 12.87494 0.07 0.946 -24.36723 26.10163
|
_cons | 16.98561 3.146826 5.40 0.000 10.81795 23.15328
-------------+----------------------------------------------------------------
lmp |
liq |
L1. | -.000082 .0000275 -2.98 0.003 -.0001359 -.0000281
L2. | -.0000684 .0000275 -2.49 0.013 -.0001223 -.0000146
L3. | -.0000266 .0000276 -0.96 0.335 -.0000807 .0000275
L4. | -.0000393 .0000277 -1.42 0.155 -.0000935 .0000149
L5. | .0000196 .0000275 0.71 0.476 -.0000343 .0000735
L6. | -.0000403 .0000275 -1.47 0.142 -.0000941 .0000135
L7. | .0000204 .0000275 0.74 0.458 -.0000335 .0000742
|
lmp |
L1. | 1.291029 .0222286 58.08 0.000 1.247462 1.334596
L2. | -.4806057 .0363164 -13.23 0.000 -.5517846 -.4094268
L3. | .4259273 .0325034 13.10 0.000 .3622218 .4896328
L4. | -.2275985 .0227954 -9.98 0.000 -.2722766 -.1829203
L5. | -.001822 .0216221 -0.08 0.933 -.0442005 .0405564
L6. | .0943317 .0209917 4.49 0.000 .0531886 .1354747
L7. | -.1032597 .013597 -7.59 0.000 -.1299093 -.0766102
|
_cons | .0293199 .0033233 8.82 0.000 .0228064 .0358334
------------------------------------------------------------------------------
.
我做的是一个二元VAR模型,研究融资lmp对流动性liq的影响,以及流动性liq对融资lmp的额影响。
有几点疑问:
1、R平方 这么大说明什么?是否影响结论?
2、z系数是不是和t系数是相同意思?
3、到底那几组数据是显著的?
本人数理统计小白,正在学习,请大神不吝赐教。
再次谢谢。!