\[ \begin{cases}
n\hat\beta_0+\sum X_i
\cdot\hat\beta_1 = \sum Y_i&\\
\sum X_i \hat\beta_0+\sum X_i^2
\cdot\hat\beta_1 = \sum X_iY_i&
\end{cases}\Rightarrow
\hat\beta_1=
\frac
{\begin{vmatrix}
n & \sum Y_i\\
\sum X_i & \sum X_iY_i
\end{vmatrix}}
{\begin{vmatrix}
n & \sum X_i\\
\sum X_i & \sum X_i^2
\end{vmatrix}}
= \frac{n\sum X_iY_i-\sum X_i\sum Y_i}
{n\sum X_i^2-(\sum X_i)^2}\]
\[\begin{align*} &~\quad\frac{n\sum X_iY_i-\sum X_i\sum Y_i} {n\sum X_i^2-(\sum X_i)^2}\\ &= \frac{\displaystyle n \sum (X_i-\overline X+\overline X) (Y_i - \overline Y+\overline Y) -\sum X_i\sum Y_i} {\displaystyle n \sum (X_i-\overline X+\overline X)^2 - (\sum X_i)^2}\\ &= \frac{\displaystyle n\left(\sum (X_i-\overline X) (Y_i-\overline Y)-\overline Y \sum (X_i-\overline X) -\overline X \sum (Y_i - \overline Y) +\sum\overline X\overline Y\right)-\sum X_iY_i} {\displaystyle n\left(\sum (X_i-\overline X)^2+2\overline X \sum (X_i-\overline X)+\sum \overline X^2\right)-(\sum X_i)^2}\\ &= \frac{\displaystyle n\sum(X_i-\overline X)(Y_i-\overline Y) +n\sum\overline X\overline Y-\sum X_i Y_i} {\displaystyle n\sum (X_i-\overline X)^2+n\sum \overline X^2- (\sum X_i)^2}\\ &= \frac{\displaystyle \sum (X_i-\overline X)(Y_i-\overline Y)} {\displaystyle \sum(X_i-\overline X)^2} \end{align*}\]