设X1(p1,p2,m)与X2(p1,p2,m)是对应的Marshall需求函数(以大写表示),u(x1,x2)是直接效用函数(以小写表示),v(p1,p2,m)是间接效用函数,则有恒等式u(X1,X2)=v(p1,p2,m)=m/(p1+p2)与p1X1+p2X2=m,将后式代入前式得u(X1,X2)=(p1X1+p2X2)/(p1+p2),将该式的大写换成小写,可得直接效用函数u(x1,x2)=(p1x1+p2x2)/(p1+p2)。(直接效用函数的形式不是唯一的)
[此贴子已经被作者于2005-11-12 16:17:47编辑过]