adamesky 发表于 2018-4-17 22:05 
我最近的一篇论文使用了该方法。论文数据连接中有修改后的、适用于逗号分隔符数据文件的gauss代码。具体参见 ...
您好,我下了您的数据跑了一下结果,和您论文结果不太一致,包括seo(2016)的数据,我跑下来结果也和他论文的不一致。可能是由于我不懂怎么看guass直接出来的结果,所以想请教您,guass运行后的结果还需要处理吗,从而得到论文的结果?谢谢,麻烦您了!
下面是程序运行后的结果,但我找不到和论文一致的数据。
threshold variable = illiterate rate 
qn~ns~jm~jn~t0 : 200.0000 200.0000   1.0000  2.0000   6.0000 
 number ofmoments:  24.0000 
 
 linearity test fromanalytic      :   0.0000 
 linearity test fromaveraging:   0.0000 
 
/------ output based on analytic variance formula-----/
 proportion of upperregime:   0.6330 
 estimates and s.e.(threshold~lower regime (lag y,x)~delta (1,lag y,x)
  7.8300   0.3459  0.0959  -0.0247   0.0549 -0.0019  -0.3505   0.0879 -0.1185   0.0062  -0.0135  0.0273   0.1000 
  1.0207   0.0717  0.0276   0.0121   0.0123  0.0312   0.2113   0.0545  0.0517   0.0131   0.0057  0.0274   0.2206 
 upper regimeestimates and s.e. (lag y,x)
  0.4338  -0.0226 -0.0185   0.0414   0.0254 -0.2505 
  0.0859   0.0328  0.0049   0.0093   0.0120  0.1794 
 Long-run parameterestimates and s.e.
  0.0959  -0.0247  0.0549  -0.0019  -0.3505 -0.0226  -0.0185   0.0414  0.0254  -0.2505 
  0.0466   0.0183   0.0205  0.0478   0.3083   0.1536  0.0508   0.0294   0.0175  0.1379 
 OveridentificationJ-statistic (p-value) 
 10.7826   0.4617 
 
/------ in case of averaging -----/
 proportion of upperregime:   0.5859 
 estimates and s.e.(threshold~lower regime (lag y,x)~delta (1,lag y,x)
  8.4119   0.2649  0.0998  -0.0211   0.0486  0.0621  -0.0888   0.1072 -0.1308   0.0049  -0.0052 -0.0167  -0.0276 
  1.5349   0.0913  0.0327   0.0157   0.0089  0.0197   0.1409   0.0872  0.0476   0.0156   0.0044  0.0228   0.3165 
 upper regimeestimates and s.e. (lag y,x)
  0.3722  -0.0310 -0.0162   0.0433   0.0454 -0.1164 
  0.1112   0.0359  0.0057   0.0074   0.0113  0.2436 
 Long-run parameterestimates and s.e.
  0.0998  -0.0211  0.0486   0.0621  -0.0888 -0.0310  -0.0162   0.0433  0.0454  -0.1164 
  0.0495   0.0219  0.0137   0.0321   0.1844  0.1907   0.0513   0.0292  0.0299   0.0653 
 OveridentificationJ-statistic (p-value) 
 12.0154   0.3625 
 elapsed time : 3 minutes  6.78 seconds