全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
565 0
2017-09-24
摘要:电力变压器的绕组热点温度是影响其绝缘性能的主要因素之一,因此有必要进行电力变压器绕组热点温度预测以提高电力变压器的运行可靠性。变压器内部温度受诸多因素的影响,且计算涉及到传热学、流体力学和电磁学等边缘学科,以致其计算复杂,不宜使用。广义回归神经网络(GRNN)具有较强的非线性映射能力和柔性网络结构以及高度的容错性和鲁棒性等特点,将其应用于变压器绕组热点温度的预测,克服了基于误差反向传播算法的人工神经网络(BPNN)预测时训练过程中存在局部最小点、收敛速度慢等缺点。将预测结果与实测值进行对比,结果表明GRNN神经网络的预测结果与实测值具有较好的一致性。

原文链接:http://www.cqvip.com/QK/90990X/201201/40513795.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群