全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
699 0
2017-09-25
摘要:发电机进相运行是调节电网电压、改善电能质量的一种经济性、技术性皆优的先进手段。由于发电机是一个多变量、强耦合的非线性系统,基于传统分析方法难以精确建立其进相能力分析模型,本文提出基于径向基函数(RBF)神经网络的发电机进相能力模型,以发电机有功功率和无功功率为输入,以发电机功角、电网电压为输出,采用江苏电网某600MW发电机进相试验数据训练和测试RBF网络,并探讨了基宽、神经元数的选择对RBF网络收敛精度的影响。研究表明本文所建立的发电机进相RBF模型具有速度快、精度高的优点,具有良好的泛化能力,其性能优于BP神经网络模型。本文提出的方法能有效克服传统进相分析方法的局限性,适用于发电机进相运行实时控制,有推广应用价值。

原文链接:http://www.cqvip.com/QK/94183X/201201/40780617.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群