摘要:为了补偿影响压电陶瓷执行器纳米定位系统精度的迟滞非线性,提高系统的控制精度,开展了基于压电陶瓷执行器的迟滞非线性逆模型的研究。兼顾到迟滞的擦除特性和建模的精确度,提出了一种Preisach逆模型分类排序法的神经网络实现方法,用神经网络取代了传统的反查值方法,以避免插值误差。建立三层BP神经网络,运用实测数据进行训练,确定各层权值;然后,结合排序得到的电压和位移极值信息,通过神经网络方法拟合出较精确的输入电压值。运用若干组实验数据检验了此逆模型的有效性,结果表明,该神经网络的实现方法将逆模型的平均误差降低到了1.5V以下,最大误差绝对值降低到了2.7V以下。与反查值方法相比,
神经网络实现方法有效提高了压电陶瓷执行器纳米定位系统的迟滞逆模型的精度。
原文链接:http://www.cqvip.com/Main/Detail.aspx?id=33749730
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)