摘要:云模型是用自然语言值表示的某个定性概念与其定量表示之间的不确定性转换模型,RBF神经网络已经广泛应用于遥感影像分类。考虑到传统的RBF神经网络分类技术不能有效表达影像分类过程中存在的不确定性、难以自适应地确定隐含层神经元,本文提出了一个基于高维云模型和改进RBF神经网络的不确定性分类技术。利用高维正态云创建隐含层神经元,使RBF神经网络能充分表达影像分类过程中存在的不确定性。通过峰值法云变换和高维云算法自适应地确定最优隐含层神经元。通过基于概率的权值确定和频率阈值调整,进一步优化RBF
神经网络的结构。实验表明,本文提出的方法有较高的分类精度,分类结果基本上与人眼目视解译一致。
原文链接:http://www.cqvip.com/QK/90556A/201201/40735497.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)