摘要:根据李群具有微分流形的性质,提出了一种李群
机器学习的线性分类算法.该分类方法的思想是:首先将样本数据集嵌入到微分流形当中,每个实例对应着流形上的一个点,利用测地线距离度量两个实例间的距离;然后,根据测试实例和训练数据集中实例间测地线距离的代数关系,确定测试实例的分类.实验测试表明,该线性分类算法较k-最近邻算法(KNN)及NaiveBayes分类算法具有较高的分类精度.
原文链接:http://www.cqvip.com//QK/92040X/200910/31744370.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)