全部版块 我的主页
论坛 数据科学与人工智能 人工智能 人工智能论文版
476 0
2017-10-27
摘要:以提高RBF网络泛化能力为着眼点,提出了一种新型的网络结构自适应学习算法.该算法采用衰减聚类半径的聚类算法来确定初始的隐层结构,然后通过调整包含样本类别信息的扩展聚类不纯度来修正隐层结构,直至满足所有扩展聚类不纯度均小于等于不纯度均值以及所有扩展聚类方差均不超过方差均值这两个条件.这样就确定了隐层的最终结构.在确定隐层结构之后,采用反向传播算法来训练隐层与输出层之间的连接权重.经双螺旋线问题仿真试验验证,该算法确实具有较强的泛化能力.

原文链接:http://www.cqvip.com//QK/90818X/200311/8725321.html

送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)

二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

相关推荐
栏目导航
热门文章
推荐文章

说点什么

分享

扫码加好友,拉您进群
各岗位、行业、专业交流群