摘要:应用识别与流量分类是网络管理、安全、研究等相关事务的必要前提.随着网络的高速发展以及各种新型应用的不断涌现,基于分组传榆层端口号和深度分组解析的分类技术难以满足需求.本文验证网络流量的统计特性可以有效地区分不同应用,提出一种基于C4.5决策树分类器的有监督网络流量分类方法,讨论boosting增强方法和特征选择两种改进.实验结果表明,C4.5分类器的训练复杂度适中,准确率高且分类速度快;增强方法可以进一步提高分类器的准确率,代价是训练时间大幅提高和分类时间稍微减慢;特征选择算法则提高分类速度而稍微降低准确率.
原文链接:http://www.cqvip.com//QK/95659X/200911/32032673.html
送人玫瑰,手留余香~如您已下载到该资源,可在回帖当中上传与大家共享,欢迎来CDA社区交流学习。(仅供学术交流用。)