以下内容转自 数析学院,只节选了部分,有需要的同学可以直接查看原文
本文主要介绍使用 python 通过常用数据处理分析包对波动性股指构造期权模型并进行估值的方法。
一、波动性股指 VSTOXX 数据
1、VSTOXX 索引数据
<class 'pandas.core.frame.DataFrame'>DatetimeIndex: 4226 entries, 1999-01-04 to 2015-08-07Data columns (total 9 columns):V2TX 4226 non-null float64V6I1 3787 non-null float64V6I2 4226 non-null float64V6I3 4169 non-null float64V6I4 4226 non-null float64V6I5 4226 non-null float64V6I6 4210 non-null float64V6I7 4226 non-null float64V6I8 4213 non-null float64dtypes: float64(9)memory usage: 330.2 KB
2、VSTOXX 期货数据
<class 'pandas.core.frame.DataFrame'>Int64Index: 504 entries, 0 to 503Data columns (total 8 columns):A_DATE 504 non-null datetime64[ns]A_EXP_YEAR 504 non-null int64A_EXP_MONTH 504 non-null int64A_CALL_PUT_FLAG 504 non-null objectA_EXERCISE_PRICE 504 non-null int64A_SETTLEMENT_PRICE_SCALED 504 non-null int64A_PRODUCT_ID 504 non-null objectSETTLE 504 non-null float64dtypes: datetime64[ns](1), float64(1), int64(4), object(2)memory usage: 35.4+ KB
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}
{1: datetime.datetime(2014, 1, 17, 0, 0), 2: datetime.datetime(2014, 2, 21, 0, 0), 3: datetime.datetime(2014, 3, 21, 0, 0), 4: datetime.datetime(2014, 4, 18, 0, 0), 5: datetime.datetime(2014, 5, 16, 0, 0), 6: datetime.datetime(2014, 6, 20, 0, 0), 7: datetime.datetime(2014, 7, 18, 0, 0), 8: datetime.datetime(2014, 8, 15, 0, 0), 9: datetime.datetime(2014, 9, 19, 0, 0), 10: datetime.datetime(2014, 10, 17, 0, 0), 11: datetime.datetime(2014, 11, 21, 0, 0)}
以上内容转自 数析学院,如需完整内容可以直接查看原文