1 边际成本下降时平均成本不可能上升
2 在长期内,厂商总是在最优工厂规模的最小平均成本水平上经营,以生产既定数量的产品
请注明:姓名-公司-职位
以便审核进群资格,未注明则拒绝
第一个题,答案应该是YES。因为这是边际量与平均量的关系问题。
第二个要看条件。
第一个题,答案是正确。因为这是边际量与平均量的关系问题。如同一个班级的平均成绩为80分,当新增同学的成绩低于平均成绩(边际开始下降)时,比如为60分,则平均成绩(平均值)必然下降。
第二个题,答案时错误。因为当垄断竞争厂商长期均衡时,其短期平均成本曲线切于长期平均成本曲线最低点的左方,其切点同时还在其短期平均成本曲线最低点的左方。或者可以说,其生产没有达到最优规模(没有达到长期平均成本最低点)。也没有达到短期内生产的最低平均成本(在短期平均成本线最低点左方)。
如同一个班有20个同学的平均分为80~而新增两个同学~第一个同学的分数为100~第2个同学分数为95
这两个过程中~平均分的变化为:新增第一个同学时 ;平均分数由80变为(80*20+100)/21=80.95
新增第二个同学时 分数由80.95变为(80*20+100+95)/22=81.59
整个过程中新增的两个同学的分数可看做边际量~边际量由100变为95~是递减的
而平均分数由80.95变为81.59~是递增的~所以第一个判断题是错误的
1、错误。
2、条件不同结果不同。
不能这么举例的.你这个例子里分数是随机的,不是连续函数.
只要MC<AC, 必然AC'<0. 而在MC'<0时,总有MC<AC的.
本题只要证明当MC'<0时,MC<AC即可. 虽然这个结论是明显的,但不知怎样严格的用数学证明.
又考虑了一下,发现仅从数学上看,当边际量递减时,边际量大于平均量是可能的. 产出函数就是一个例子.当MP'<0,且MP>AP时,AP'>0
然而,问题在于成本函数的性质与产出函数是不同的.如果成本函数TC(Q)是单调增加,且边际成本先递减后递增的话,那么当MC'<0时,必有MC<AC,从而AC'<0.
成本函数有象产出函数那样先凸向原点后凹的吗?书上的成本函数都是先凹后凸的,不知道哪位能举出反例来呢?